We develop a mathematical framework that interprets Transformer attention as an interacting particle system and studies its continuum (mean-field) limits. By idealizing attention on the sphere, we connect Transformer dynamics to Wasserstein gradient flows, synchronization models (Kuramoto), and mean-shift clustering. Central to our results is a global clustering phenomenon whereby tokens cluster asymptotically after long metastable states where they are arranged into multiple clusters. We further analyze a tractable equiangular reduction to obtain exact clustering rates, show how commonly used normalization schemes alter contraction speeds, and identify a phase transition for long-context attention. The results highlight both the mechanisms that drive representation collapse and the regimes that preserve expressive, multi-cluster structure in deep attention architectures.


翻译:我们建立了一个数学框架,将Transformer注意力机制解释为相互作用的粒子系统,并研究其连续(均值场)极限。通过在球面上理想化注意力机制,我们将Transformer动力学与Wasserstein梯度流、同步模型(Kuramoto)以及均值漂移聚类联系起来。我们结果的核心是一种全局聚类现象:在经历多个聚类排列的长时间亚稳态后,标记会渐近地聚集成簇。我们进一步分析了一个可处理的等角约化模型以获得精确的聚类速率,展示了常用归一化方案如何改变收缩速度,并识别了长上下文注意力的相变。这些结果既揭示了驱动表征崩溃的机制,也指出了在深度注意力架构中保持富有表达力的多聚类结构的参数区域。

0
下载
关闭预览

相关内容

【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
【ICML2024】基于正则化的持续学习的统计理论
专知会员服务
21+阅读 · 2024年6月11日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
注意力机制可解释吗?这篇ACL 2019论文说……
机器之心
11+阅读 · 2019年6月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 1月8日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员