An independent set in a graph $G$ is a set $S$ of pairwise non-adjacent vertices in $G$. A family $\mathcal{F}$ of independent sets in $G$ is called a $k$-independence covering family if for every independent set $I$ in $G$ of size at most $k$, there exists an $S \in \mathcal{F}$ such that $I \subseteq S$. Lokshtanov et al. [ACM Transactions on Algorithms, 2018] showed that graphs of degeneracy $d$ admit $k$-independence covering families of size $\binom{k(d+1)}{k} \cdot 2^{o(kd)} \cdot \log n$, and used this result to design efficient parameterized algorithms for a number of problems, including STABLE ODD CYCLE TRANSVERSAL and STABLE MULTICUT. In light of the results of Lokshtanov et al. it is quite natural to ask whether even more general families of graphs admit $k$-independence covering families of size $f(k)n^{O(1)}$. Graphs that exclude a complete bipartite graph $K_{d+1,d+1}$ with $d+1$ vertices on both sides as a subgraph, called $K_{d+1,d+1}$-free graphs, are a frequently considered generalization of $d$-degenerate graphs. This motivates the question whether $K_{d,d}$-free graphs admit $k$-independence covering families of size $f(k,d)n^{O(1)}$. Our main result is a resounding "no" to this question -- specifically we prove that even $K_{2,2}$-free graphs (or equivalently $C_4$-free graphs) do not admit $k$-independence covering families of size $f(k)n^{\frac{k}{4}-\epsilon}$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年10月17日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员