Video capsule endoscopy has become increasingly important for investigating the small intestine within the gastrointestinal tract. However, a persistent challenge remains the short battery lifetime of such compact sensor edge devices. Integrating artificial intelligence can help overcome this limitation by enabling intelligent real-time decision-making, thereby reducing the energy consumption and prolonging the battery life. However, this remains challenging due to data sparsity and the limited resources of the device restricting the overall model size. In this work, we introduce a multi-task neural network that combines the functionalities of precise self-localization within the gastrointestinal tract with the ability to detect anomalies in the small intestine within a single model. Throughout the development process, we consistently restricted the total number of parameters to ensure the feasibility to deploy such model in a small capsule. We report the first multi-task results using the recently published Galar dataset, integrating established multi-task methods and Viterbi decoding for subsequent time-series analysis. This outperforms current single-task models and represents a significant advance in AI-based approaches in this field. Our model achieves an accuracy of 93.63% on the localization task and an accuracy of 87.48% on the anomaly detection task. The approach requires only 1 million parameters while surpassing the current baselines.


翻译:视频胶囊内窥镜在胃肠道内的小肠检查中已变得日益重要。然而,此类紧凑型传感器边缘设备持续面临的一个挑战是其电池续航时间较短。集成人工智能可以通过实现智能实时决策来帮助克服这一限制,从而降低能耗并延长电池寿命。然而,由于数据稀疏性以及设备有限资源对模型整体规模的限制,这仍然具有挑战性。在本工作中,我们提出了一种多任务神经网络,该网络在一个单一模型中结合了在胃肠道内精确定位自身位置的功能与检测小肠异常的能力。在整个开发过程中,我们始终限制参数总数,以确保此类模型在小型胶囊中部署的可行性。我们报告了使用近期发布的Galar数据集获得的首个多任务结果,该结果整合了成熟的多任务方法以及用于后续时间序列分析的维特比解码。该模型性能超越了当前的单任务模型,代表了该领域基于人工智能方法的一次重大进展。我们的模型在定位任务上达到了93.63%的准确率,在异常检测任务上达到了87.48%的准确率。该方法仅需100万个参数,同时超越了当前基线。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员