We provide improved lower bounds for two well-known high-dimensional private estimation tasks. First, we prove that for estimating the covariance of a Gaussian up to spectral error $\alpha$ with approximate differential privacy, one needs $\tilde{\Omega}\left(\frac{d^{3/2}}{\alpha \varepsilon} + \frac{d}{\alpha^2}\right)$ samples for any $\alpha \le O(1)$, which is tight up to logarithmic factors. This improves over previous work which established this for $\alpha \le O\left(\frac{1}{\sqrt{d}}\right)$, and is also simpler than previous work. Next, we prove that for estimating the mean of a heavy-tailed distribution with bounded $k$th moments with approximate differential privacy, one needs $\tilde{\Omega}\left(\frac{d}{\alpha^{k/(k-1)} \varepsilon} + \frac{d}{\alpha^2}\right)$ samples. This matches known upper bounds and improves over the best known lower bound for this problem, which only hold for pure differential privacy, or when $k = 2$. Our techniques follow the method of fingerprinting and are generally quite simple. Our lower bound for heavy-tailed estimation is based on a black-box reduction from privately estimating identity-covariance Gaussians. Our lower bound for covariance estimation utilizes a Bayesian approach to show that, under an Inverse Wishart prior distribution for the covariance matrix, no private estimator can be accurate even in expectation, without sufficiently many samples.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年11月19日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员