In this article, we introduce a new parameterized family of topological descriptors, taking the form of candidate decompositions, for multi-parameter persistence modules, and we identify a subfamily of these descriptors, that we call approximate decompositions, that are controllable approximations, in the sense that they preserve diagonal barcodes. Then, we introduce MMA (Multipersistence Module Approximation): an algorithm based on matching functions for computing instances of candidate decompositions with some precision parameter {\delta} > 0. By design, MMA can handle an arbitrary number of filtrations, and has bounded complexity and running time. Moreover, we prove the robustess of MMA: when computed with so-called compatible matching functions, we show that MMA produces approximate decompositions (and we prove that such matching functions exist for n = 2 filtrations). Next, we restrict the focus on modules that can be decomposed into interval summands. In that case, compatible matching functions always exist, and we show that, for small enough {\delta}, the approximate decompositions obtained with such compatible matching functions by MMA have an approximation error (in terms of the standard interleaving and bottleneck distances) that is bounded by {\delta}, and that reaches zero for an even smaller, positive precision. Finally, we present empirical evidence validating that MMA has state-of-the-art performance and running time on several data sets.


翻译:本文针对多参数持久性模块,引入了一种新的参数化拓扑描述符族,其形式为候选分解。我们从中识别出一个子族,称为近似分解,这些是可控的逼近,因为它们保持对角线条形码不变。接着,我们提出MMA(多持久性模块逼近)算法:该算法基于匹配函数,用于计算具有精度参数δ > 0的候选分解实例。通过设计,MMA能够处理任意数量的过滤,并具有有界的复杂度和运行时间。此外,我们证明了MMA的鲁棒性:当使用所谓的兼容匹配函数计算时,MMA能够产生近似分解(我们证明了对于n = 2个过滤,这样的匹配函数存在)。接下来,我们将重点限制在可分解为区间直和项的模块上。在这种情况下,兼容匹配函数始终存在,并且我们证明,对于足够小的δ,通过MMA使用此类兼容匹配函数获得的近似分解,其逼近误差(以标准交错距离和瓶颈距离衡量)以δ为界,并且当精度更小且为正时,误差可达到零。最后,我们通过实验证据验证了MMA在多个数据集上具有最先进的性能和运行时间。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Optimization for deep learning: theory and algorithms
Arxiv
106+阅读 · 2019年12月19日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员