Accurate and real-time object detection is crucial for anomaly behavior detection, especially in scenarios constrained by hardware limitations, where balancing accuracy and speed is essential for enhancing detection performance. This study proposes a model called HGO-YOLO, which integrates the HGNetv2 architecture into YOLOv8. This combination expands the receptive field and captures a wider range of features while simplifying model complexity through GhostConv. We introduced a lightweight detection head, OptiConvDetect, which utilizes parameter sharing to construct the detection head effectively. Evaluation results show that the proposed algorithm achieves a mAP@0.5 of 87.4% and a recall rate of 81.1%, with a model size of only 4.6 MB and a frame rate of 56 FPS on the CPU. HGO-YOLO not only improves accuracy by 3.0% but also reduces computational load by 51.69% (from 8.9 GFLOPs to 4.3 GFLOPs), while increasing the frame rate by a factor of 1.7. Additionally, real-time tests were conducted on Raspberry Pi4 and NVIDIA platforms. These results indicate that the HGO-YOLO model demonstrates superior performance in anomaly behavior detection.


翻译:准确且实时的目标检测对于异常行为识别至关重要,尤其在硬件资源受限的场景中,平衡精度与速度是提升检测性能的关键。本研究提出了一种名为HGO-YOLO的模型,它将HGNetv2架构集成到YOLOv8中。这种结合扩展了感受野并捕获了更广泛的特征,同时通过GhostConv简化了模型复杂度。我们引入了一种轻量级检测头OptiConvDetect,它利用参数共享高效构建检测头。评估结果表明,所提算法在CPU上实现了87.4%的mAP@0.5和81.1%的召回率,模型大小仅为4.6 MB,帧率达到56 FPS。HGO-YOLO不仅将精度提升了3.0%,还将计算负载降低了51.69%(从8.9 GFLOPs降至4.3 GFLOPs),同时将帧率提高了1.7倍。此外,我们在树莓派4和NVIDIA平台上进行了实时测试。这些结果表明,HGO-YOLO模型在异常行为检测中展现出优越的性能。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员