The ability to comprehend code has long been recognized as an essential skill in software engineering. As programmers lean more heavily on generative artificial intelligence (GenAI) assistants to develop code solutions, it is becoming increasingly important for programmers to comprehend GenAI solutions so that they can verify their appropriateness and properly integrate them into existing code. At the same time, GenAI tools are increasingly being enlisted to provide programmers with tailored explanations of code written both by GenAI and humans. Thus, in computing education, GenAI presents new challenges and opportunities for learners who are trying to comprehend computer programs. To provide computing educators with evidence-based guidance on the use of GenAI to facilitate code comprehension and to identify directions for future research, we present a systematic literature review (SLR) of state-of-the-art approaches and tools that leverage GenAI to enhance code comprehension. Our SLR focuses on 31 studies published between 2022 and 2024. Despite their potential, GenAI assistants often yield inaccurate or unclear explanations, and novice programmers frequently struggle to craft effective prompts, thereby impeding their ability to leverage GenAI to aid code comprehension. Our review classifies GenAI-based approaches and tools, identifies methods used to study them, and summarizes the empirical evaluations of their effectiveness. We consider the implications of our findings for computing education research and practice, and identify directions for future research.


翻译:代码理解能力长期以来被公认为软件工程中的一项关键技能。随着程序员日益依赖生成式人工智能(GenAI)助手来开发代码解决方案,程序员理解GenAI生成的解决方案变得愈发重要,以便验证其适用性并将其正确集成到现有代码中。与此同时,GenAI工具正越来越多地被用于为程序员提供针对GenAI和人类编写代码的定制化解释。因此,在计算教育领域,GenAI为试图理解计算机程序的学习者带来了新的挑战与机遇。为向计算教育工作者提供基于证据的指导,促进利用GenAI辅助代码理解,并明确未来研究方向,我们对利用GenAI增强代码理解的前沿方法与工具进行了系统文献综述。本综述聚焦于2022年至2024年间发表的31项研究。尽管具有潜力,GenAI助手常产生不准确或模糊的解释,且新手程序员往往难以构建有效的提示,从而阻碍其利用GenAI辅助代码理解的能力。本综述对基于GenAI的方法与工具进行了分类,识别了相关研究方法,并总结了其有效性的实证评估结果。我们探讨了研究发现对计算教育研究与实践的启示,并指明了未来研究方向。

0
下载
关闭预览

相关内容

代码(Code)是专知网的一个重要知识资料文档板块,旨在整理收录论文源代码、复现代码,经典工程代码等,便于用户查阅下载使用。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员