We develop a practical framework for distinguishing diffusive stochastic processes from deterministic signals using only a single discrete time series. Our approach is based on classical excursion and crossing theorems for continuous semimartingales, which correlates number $N_\varepsilon$ of excursions of magnitude at least $\varepsilon$ with the quadratic variation $[X]_T$ of the process. The scaling law holds universally for all continuous semimartingales with finite quadratic variation, including general Ito diffusions with nonlinear or state-dependent volatility, but fails sharply for deterministic systems -- thereby providing a theoretically-certfied method of distinguishing between these dynamics, as opposed to the subjective entropy or recurrence based state of the art methods. We construct a robust data-driven diffusion test. The method compares the empirical excursion counts against the theoretical expectation. The resulting ratio $K(\varepsilon)=N_{\varepsilon}^{\mathrm{emp}}/N_{\varepsilon}^{\mathrm{theory}}$ is then summarized by a log-log slope deviation measuring the $\varepsilon^{-2}$ law that provides a classification into diffusion-like or not. We demonstrate the method on canonical stochastic systems, some periodic and chaotic maps and systems with additive white noise, as well as the stochastic Duffing system. The approach is nonparametric, model-free, and relies only on the universal small-scale structure of continuous semimartingales.


翻译:我们提出了一种实用框架,仅通过单个离散时间序列即可区分扩散型随机过程与确定性信号。该方法基于连续半鞅的经典游程与穿越定理,将幅度至少为$\varepsilon$的游程数量$N_\varepsilon$与过程的二次变分$[X]_T$相关联。该标度律对所有具有有限二次变分的连续半鞅普遍成立,包括具有非线性或状态依赖波动率的一般伊藤扩散过程,但对确定性系统则明显失效——从而提供了一种理论可验证的动态区分方法,相较于当前基于主观熵或递归的先进方法具有显著优势。我们构建了一种鲁棒的数据驱动扩散检验方法,通过比较经验游程计数与理论期望值,将所得比值$K(\varepsilon)=N_{\varepsilon}^{\mathrm{emp}}/N_{\varepsilon}^{\mathrm{theory}}$通过衡量$\varepsilon^{-2}$律的对数-对数斜率偏差进行汇总,从而实现扩散类与非扩散类系统的分类。我们在典型随机系统、若干周期与混沌映射、加性白噪声系统以及随机杜芬系统上验证了该方法。该框架具有非参数、模型无关的特性,仅依赖于连续半鞅的普适小尺度结构。

0
下载
关闭预览

相关内容

UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
【NeurIPS2022】黎曼扩散模型
专知会员服务
43+阅读 · 2022年9月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
EKF常用于目标跟踪系统的扩展卡尔曼滤波器
无人机
10+阅读 · 2017年7月25日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
【NeurIPS2022】黎曼扩散模型
专知会员服务
43+阅读 · 2022年9月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
相关资讯
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
EKF常用于目标跟踪系统的扩展卡尔曼滤波器
无人机
10+阅读 · 2017年7月25日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员