Data-driven models of stellar spectra are useful tools to study non-stellar information, such as the Diffuse Interstellar Bands (DIBs) caused by intervening interstellar material. Using $\sim 55000$ spectra of $\sim 17000$ red clump stars from the APOGEE DR16 dataset, we create 2nd order polynomial models of the continuum-normalized flux as a function of stellar parameters ($T_{eff}$, $\log g$, [Fe/H], [$\alpha$/Fe], and Age). The model and data show good agreement within uncertainties across the APOGEE wavelength range, although many regions reveal residuals that are not in the stellar rest-frame. We show that many of these residual features -- having average extrema at the level of $\sim3\%$ in stellar flux on average -- can be attributed to incompletely-removed spectral lines from the Earth's atmosphere and DIBs from the interstellar medium (ISM). After removing most of the remaining contamination from the Earth's sky, we identify 84 absorption features not seen in unreddened sightlights that have $<50\%$ probability of being noise artifacts -- with 25 of these features having $<5\%$ probability of being noise artifacts -- including all 10 previously-known DIBs in the APOGEE wavelength range. Because many of these features occur in the wavelength windows that APOGEE uses to measure chemical abundances, characterization and removal of this non-stellar contamination is an important step in reaching the precision required for chemical tagging experiments. Proper characterization of these features will benefit Galactic ISM science and the currently-ongoing Milky Way Mapper program of SDSS-V, which relies on the APOGEE spectrograph.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员