We investigate bandit convex optimization (BCO) with delayed feedback, where only the loss value of the action is revealed under an arbitrary delay. Previous studies have established a regret bound of $O(T^{3/4}+d^{1/3}T^{2/3})$ for this problem, where $d$ is the maximum delay, by simply feeding delayed loss values to the classical bandit gradient descent (BGD) algorithm. In this paper, we develop a novel algorithm to enhance the regret, which carefully exploits the delayed bandit feedback via a blocking update mechanism. Our analysis first reveals that the proposed algorithm can decouple the joint effect of the delays and bandit feedback on the regret, and improve the regret bound to $O(T^{3/4}+\sqrt{dT})$ for convex functions. Compared with the previous result, our regret matches the $O(T^{3/4})$ regret of BGD in the non-delayed setting for a larger amount of delay, i.e., $d=O(\sqrt{T})$, instead of $d=O(T^{1/4})$. Furthermore, we consider the case with strongly convex functions, and prove that the proposed algorithm can enjoy a better regret bound of $O(T^{2/3}\log^{1/3}T+d\log T)$. Finally, we show that in a special case with unconstrained action sets, it can be simply extended to achieve a regret bound of $O(\sqrt{T\log T}+d\log T)$ for strongly convex and smooth functions.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员