In the contemporary data landscape characterized by multi-source data collection and third-party sharing, ensuring individual privacy stands as a critical concern. While various anonymization methods exist, their utility preservation and privacy guarantees remain challenging to quantify. In this work, we address this gap by studying the utility and privacy of the spectral anonymization (SA) algorithm, particularly in an asymptotic framework. Unlike conventional anonymization methods that directly modify the original data, SA operates by perturbing the data in a spectral basis and subsequently reverting them to their original basis. Alongside the original version $\mathcal{P}$-SA, employing random permutation transformation, we introduce two novel SA variants: $\mathcal{J}$-spectral anonymization and $\mathcal{O}$-spectral anonymization, which employ sign-change and orthogonal matrix transformations, respectively. We show how well, under some practical assumptions, these SA algorithms preserve the first and second moments of the original data. Our results reveal, in particular, that the asymptotic efficiency of all three SA algorithms in covariance estimation is exactly 50% when compared to the original data. To assess the applicability of these asymptotic results in practice, we conduct a simulation study with finite data and also evaluate the privacy protection offered by these algorithms using distance-based record linkage. Our research reveals that while no method exhibits clear superiority in finite-sample utility, $\mathcal{O}$-SA distinguishes itself for its exceptional privacy preservation, never producing identical records, albeit with increased computational complexity. Conversely, $\mathcal{P}$-SA emerges as a computationally efficient alternative, demonstrating unmatched efficiency in mean estimation.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年9月28日
Arxiv
0+阅读 · 2024年9月26日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员