Lingdong Kong,Shaoyuan Xie,Zeying Gong,Ye Li,Meng Chu,Ao Liang,Yuhao Dong,Tianshuai Hu,Ronghe Qiu,Rong Li,Hanjiang Hu,Dongyue Lu,Wei Yin,Wenhao Ding,Linfeng Li,Hang Song,Wenwei Zhang,Yuexin Ma,Junwei Liang,Zhedong Zheng,Lai Xing Ng,Benoit R. Cottereau,Wei Tsang Ooi,Ziwei Liu,Zhanpeng Zhang,Weichao Qiu,Wei Zhang,Ji Ao,Jiangpeng Zheng,Siyu Wang,Guang Yang,Zihao Zhang,Yu Zhong,Enzhu Gao,Xinhan Zheng,Xueting Wang,Shouming Li,Yunkai Gao,Siming Lan,Mingfei Han,Xing Hu,Dusan Malic,Christian Fruhwirth-Reisinger,Alexander Prutsch,Wei Lin,Samuel Schulter,Horst Possegger,Linfeng Li,Jian Zhao,Zepeng Yang,Yuhang Song,Bojun Lin,Tianle Zhang,Yuchen Yuan,Chi Zhang,Xuelong Li,Youngseok Kim,Sihwan Hwang,Hyeonjun Jeong,Aodi Wu,Xubo Luo,Erjia Xiao,Lingfeng Zhang,Yingbo Tang,Hao Cheng,Renjing Xu,Wenbo Ding,Lei Zhou,Long Chen,Hangjun Ye,Xiaoshuai Hao,Shuangzhi Li,Junlong Shen,Xingyu Li,Hao Ruan,Jinliang Lin,Zhiming Luo,Yu Zang,Cheng Wang,Hanshi Wang,Xijie Gong,Yixiang Yang,Qianli Ma,Zhipeng Zhang,Wenxiang Shi,Jingmeng Zhou,Weijun Zeng,Kexin Xu,Yuchen Zhang,Haoxiang Fu,Ruibin Hu,Yanbiao Ma,Xiyan Feng,Wenbo Zhang,Lu Zhang,Yunzhi Zhuge,Huchuan Lu,You He,Seungjun Yu,Junsung Park,Youngsun Lim,Hyunjung Shim,Faduo Liang,Zihang Wang,Yiming Peng,Guanyu Zong,Xu Li,Binghao Wang,Hao Wei,Yongxin Ma,Yunke Shi,Shuaipeng Liu,Dong Kong,Yongchun Lin,Huitong Yang,Liang Lei,Haoang Li,Xinliang Zhang,Zhiyong Wang,Xiaofeng Wang,Yuxia Fu,Yadan Luo,Djamahl Etchegaray,Yang Li,Congfei Li,Yuxiang Sun,Wenkai Zhu,Wang Xu,Linru Li,Longjie Liao,Jun Yan,Benwu Wang,Xueliang Ren,Xiaoyu Yue,Jixian Zheng,Jinfeng Wu,Shurui Qin,Wei Cong,Yao He
Lingdong Kong,Shaoyuan Xie,Zeying Gong,Ye Li,Meng Chu,Ao Liang,Yuhao Dong,Tianshuai Hu,Ronghe Qiu,Rong Li,Hanjiang Hu,Dongyue Lu,Wei Yin,Wenhao Ding,Linfeng Li,Hang Song,Wenwei Zhang,Yuexin Ma,Junwei Liang,Zhedong Zheng,Lai Xing Ng,Benoit R. Cottereau,Wei Tsang Ooi,Ziwei Liu,Zhanpeng Zhang,Weichao Qiu,Wei Zhang,Ji Ao,Jiangpeng Zheng,Siyu Wang,Guang Yang,Zihao Zhang,Yu Zhong,Enzhu Gao,Xinhan Zheng,Xueting Wang,Shouming Li,Yunkai Gao,Siming Lan,Mingfei Han,Xing Hu,Dusan Malic,Christian Fruhwirth-Reisinger,Alexander Prutsch,Wei Lin,Samuel Schulter,Horst Possegger,Linfeng Li,Jian Zhao,Zepeng Yang,Yuhang Song,Bojun Lin,Tianle Zhang,Yuchen Yuan,Chi Zhang,Xuelong Li,Youngseok Kim,Sihwan Hwang,Hyeonjun Jeong,Aodi Wu,Xubo Luo,Erjia Xiao,Lingfeng Zhang,Yingbo Tang,Hao Cheng,Renjing Xu,Wenbo Ding,Lei Zhou,Long Chen,Hangjun Ye,Xiaoshuai Hao,Shuangzhi Li,Junlong Shen,Xingyu Li,Hao Ruan,Jinliang Lin,Zhiming Luo,Yu Zang,Cheng Wang,Hanshi Wang,Xijie Gong,Yixiang Yang,Qianli Ma,Zhipeng Zhang,Wenxiang Shi,Jingmeng Zhou,Weijun Zeng,Kexin Xu,Yuchen Zhang,Haoxiang Fu,Ruibin Hu,Yanbiao Ma,Xiyan Feng,Wenbo Zhang,Lu Zhang,Yunzhi Zhuge,Huchuan Lu,You He,Seungjun Yu,Junsung Park,Youngsun Lim,Hyunjung Shim,Faduo Liang,Zihang Wang,Yiming Peng,Guanyu Zong,Xu Li,Binghao Wang,Hao Wei,Yongxin Ma,Yunke Shi,Shuaipeng Liu,Dong Kong,Yongchun Lin,Huitong Yang,Liang Lei,Haoang Li,Xinliang Zhang,Zhiyong Wang,Xiaofeng Wang,Yuxia Fu,Yadan Luo,Djamahl Etchegaray,Yang Li,Congfei Li,Yuxiang Sun,Wenkai Zhu,Wang Xu,Linru Li,Longjie Liao,Jun Yan,Benwu Wang,Xueliang Ren,Xiaoyu Yue,Jixian Zheng,Jinfeng Wu,Shurui Qin,Wei Cong,Yao He

Autonomous systems are increasingly deployed in open and dynamic environments -- from city streets to aerial and indoor spaces -- where perception models must remain reliable under sensor noise, environmental variation, and platform shifts. However, even state-of-the-art methods often degrade under unseen conditions, highlighting the need for robust and generalizable robot sensing. The RoboSense 2025 Challenge is designed to advance robustness and adaptability in robot perception across diverse sensing scenarios. It unifies five complementary research tracks spanning language-grounded decision making, socially compliant navigation, sensor configuration generalization, cross-view and cross-modal correspondence, and cross-platform 3D perception. Together, these tasks form a comprehensive benchmark for evaluating real-world sensing reliability under domain shifts, sensor failures, and platform discrepancies. RoboSense 2025 provides standardized datasets, baseline models, and unified evaluation protocols, enabling large-scale and reproducible comparison of robust perception methods. The challenge attracted 143 teams from 85 institutions across 16 countries, reflecting broad community engagement. By consolidating insights from 23 winning solutions, this report highlights emerging methodological trends, shared design principles, and open challenges across all tracks, marking a step toward building robots that can sense reliably, act robustly, and adapt across platforms in real-world environments.


翻译:自主系统正日益部署于开放和动态的环境中——从城市街道到空中及室内空间——在这些环境中,感知模型必须在传感器噪声、环境变化和平台切换下保持可靠。然而,即使是最先进的方法在未见条件下也常常性能下降,这凸显了对鲁棒且可泛化的机器人感知的需求。RoboSense 2025挑战赛旨在提升机器人感知在多样化传感场景下的鲁棒性和适应性。它整合了五个互补的研究赛道,涵盖语言驱动的决策制定、社会合规导航、传感器配置泛化、跨视角与跨模态对应,以及跨平台三维感知。这些任务共同构成了一个全面的基准,用于评估在领域偏移、传感器故障和平台差异下的真实世界感知可靠性。RoboSense 2025提供了标准化的数据集、基线模型和统一的评估协议,使得能够对鲁棒感知方法进行大规模且可复现的比较。本次挑战赛吸引了来自16个国家、85个机构的143支队伍参与,反映了广泛的社区参与度。通过整合来自23个获胜解决方案的见解,本报告突出了各赛道中新兴的方法学趋势、共享的设计原则以及开放挑战,标志着朝着构建能够在真实世界环境中可靠感知、鲁棒行动并跨平台自适应的机器人迈出了一步。

0
下载
关闭预览

相关内容

面向具身操作的高效视觉–语言–动作模型:系统综述
专知会员服务
22+阅读 · 2025年10月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
专知会员服务
112+阅读 · 2019年11月25日
Kaggle知识点:伪标签Pseudo Label
AINLP
40+阅读 · 2020年8月9日
论文浅尝 | GEOM-GCN: Geometric Graph Convolutional Networks
开放知识图谱
14+阅读 · 2020年4月8日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员