In multiwinner approval elections with many candidates, voters may struggle to determine their preferences over the entire slate of candidates. It is therefore of interest to explore which (if any) fairness guarantees can be provided under reduced communication. In this paper, we consider voters with one-dimensional preferences: voters and candidates are associated with points in $\mathbb R$, and each voter's approval set forms an interval of $\mathbb R$. We put forward a probabilistic preference model, where the voter set consists of $\sigma$ different groups; each group is associated with a distribution over an interval of $\mathbb R$, so that each voter draws the endpoints of her approval interval from the distribution associated with her group. We present an algorithm for computing committees that provide Proportional Justified Representation + (PJR+), which proceeds by querying voters' preferences, and show that, in expectation, it makes $\mathcal{O}(\log( \sigma\cdot k))$ queries per voter, where $k$ is the desired committee size.


翻译:在候选人众多的多赢家认可选举中,选民可能难以确定其对全体候选人的偏好。因此,探索在减少沟通的情况下能够提供何种(若有)公平性保证具有重要意义。本文考虑具有一维偏好的选民:选民与候选人均关联于$\mathbb R$中的点,每位选民的认可集构成$\mathbb R$上的一个区间。我们提出一种概率偏好模型,其中选民集合包含$\sigma$个不同群体;每个群体关联于$\mathbb R$上某个区间的分布,使得每位选民从其所属群体关联的分布中抽取其认可区间的端点。我们提出一种通过查询选民偏好来计算满足比例合理性表征+(PJR+)的委员会的算法,并证明该算法在期望意义上对每位选民进行$\mathcal{O}(\log( \sigma\cdot k))$次查询,其中$k$为目标委员会规模。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
43+阅读 · 2024年1月25日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员