在这项工作中,我们介绍了一系列的架构修改,旨在提高神经网络的准确性,同时保持他们的GPU训练和推理效率。我们首先演示和讨论由flops优化引起的瓶颈。然后,我们建议更好地利用GPU结构和资产的替代设计。最后,我们介绍了一种新的GPU专用模型,称为TResNet,它比以前的ConvNets具有更好的准确性和效率。使用TResNet模型,与ResNet50的GPU吞吐量相似,在ImageNet上达到80.7%的top-1精度。我们的TResNet模型也能很好地传输竞争数据集,并达到最先进的精度,如Stanford cars(96.0%)、CIFAR-10(99.0%)、CIFAR-100(91.5%)和牛津花卉(99.1%)。实现可在:这个

https://github.com/mrT23/TResNet

成为VIP会员查看完整内容
33

相关内容

阿里巴巴集团于1999年创立,阿里巴巴集团子公司及关联公司有:阿里巴巴网络有限公司、淘宝网、淘宝商城(天猫)、一淘、支付宝、阿里云计算、中国雅虎等。
【Google】利用AUTOML实现加速感知神经网络设计
专知会员服务
30+阅读 · 2020年3月5日
重磅!MobileNetV3 来了!
计算机视觉life
4+阅读 · 2019年5月11日
谷歌 MorphNet:让你的神经网络更小但更快
机器学习算法与Python学习
5+阅读 · 2019年4月18日
基于手机系统的实时目标检测
计算机视觉战队
8+阅读 · 2018年12月5日
TResNet: High Performance GPU-Dedicated Architecture
Arxiv
8+阅读 · 2020年3月30日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
8+阅读 · 2018年5月17日
VIP会员
相关资讯
重磅!MobileNetV3 来了!
计算机视觉life
4+阅读 · 2019年5月11日
谷歌 MorphNet:让你的神经网络更小但更快
机器学习算法与Python学习
5+阅读 · 2019年4月18日
基于手机系统的实时目标检测
计算机视觉战队
8+阅读 · 2018年12月5日
相关论文
微信扫码咨询专知VIP会员