We reexamine the classical subset sum problem: given a set $X$ of $n$ positive integers and a number $t$, decide whether there exists a subset of $X$ that sums to $t$; or more generally, compute the set $\mbox{out}$ of all numbers $y\in\{0,\ldots,t\}$ for which there exists a subset of $X$ that sums to $y$. Standard dynamic programming solves the problem in $O(tn)$ time. In SODA'17, two papers appeared giving the current best deterministic and randomized algorithms, ignoring polylogarithmic factors: Koiliaris and Xu's deterministic algorithm runs in $\widetilde{O}(t\sqrt{n})$ time, while Bringmann's randomized algorithm runs in $\widetilde{O}(t)$ time. We present the first deterministic algorithm running in $\widetilde{O}(t)$ time. Our technique has a number of other applications: for example, we can also derandomize the more recent output-sensitive algorithms by Bringmann and Nakos [STOC'20] and Bringmann, Fischer, and Nakos [SODA'25] running in $\widetilde{O}(|\mbox{out}|^{4/3})$ and $\widetilde{O}(|\mbox{out}|\sqrt{n})$ time, and we can derandomize a previous fine-grained reduction from 0-1 knapsack to min-plus convolution by Cygan et al. [ICALP'17].


翻译:我们重新审视经典的子集和问题:给定一个包含 $n$ 个正整数的集合 $X$ 和一个目标值 $t$,判断是否存在 $X$ 的一个子集,其元素之和等于 $t$;或者更一般地,计算集合 $\mbox{out}$,其中包含所有满足条件的 $y\in\{0,\ldots,t\}$,使得存在 $X$ 的一个子集,其元素之和等于 $y$。标准的动态规划方法可以在 $O(tn)$ 时间内解决该问题。在 SODA'17 会议上,两篇论文提出了当前最优的确定性和随机化算法(忽略多对数因子):Koiliaris 和 Xu 的确定性算法运行时间为 $\widetilde{O}(t\sqrt{n})$,而 Bringmann 的随机化算法运行时间为 $\widetilde{O}(t)$。我们提出了首个运行时间为 $\widetilde{O}(t)$ 的确定性算法。我们的技术还具有若干其他应用:例如,我们还可以对 Bringmann 和 Nakos [STOC'20] 以及 Bringmann、Fischer 和 Nakos [SODA'25] 提出的、运行时间分别为 $\widetilde{O}(|\mbox{out}|^{4/3})$ 和 $\widetilde{O}(|\mbox{out}|\sqrt{n})$ 的近期输出敏感算法进行去随机化,并且可以对 Cygan 等人 [ICALP'17] 提出的从 0-1 背包问题到最小加卷积的先前细粒度规约进行去随机化。

0
下载
关闭预览

相关内容

在数学和计算机科学之中,算法(Algorithm)为一个计算的具体步骤,常用于计算、数据处理和自动推理。精确而言,算法是一个表示为有限长列表的有效方法。算法应包含清晰定义的指令用于计算函数。 来自维基百科: 算法
UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
【NeurIPS2021】序一致因果图的多任务学习
专知会员服务
20+阅读 · 2021年11月7日
专知会员服务
50+阅读 · 2021年6月2日
专知会员服务
42+阅读 · 2021年4月2日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 1月1日
VIP会员
相关VIP内容
UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
【NeurIPS2021】序一致因果图的多任务学习
专知会员服务
20+阅读 · 2021年11月7日
专知会员服务
50+阅读 · 2021年6月2日
专知会员服务
42+阅读 · 2021年4月2日
相关资讯
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员