When software artifacts are generated by AI models ("vibe coding"), human engineers assume responsibility for validating them. Ideally, this validation would be done through the creation of a formal proof of correctness. However, this is infeasible for many real-world vibe coding scenarios, especially when requirements for the AI-generated artifacts resist formalization. This extended abstract describes ongoing work towards the extraction of analyzable, semi-formal rationales for the adequacy of vibe-coded artifacts. Rather than deciding correctness directly, our framework produces a set of conditions under which the generated code can be considered adequate. We describe current efforts towards implementing our framework and anticipated research opportunities.


翻译:当软件制品由AI模型生成("氛围编码")时,人类工程师需承担验证责任。理想情况下,这种验证应通过构建形式化的正确性证明来完成。然而,对于许多现实世界的氛围编码场景而言,这并不可行,特别是当AI生成制品的需求难以形式化时。本扩展摘要阐述了当前正在开展的研究工作:旨在为氛围编码制品的充分性提取可分析的半形式化理论依据。我们的框架并非直接判定正确性,而是生成一组条件,在这些条件下所生成的代码可被视为充分。我们描述了当前实现该框架的工作进展以及预期的研究机遇。

0
下载
关闭预览

相关内容

【CVPR2024】PromptKD: 无监督提示蒸馏用于视觉-语言模型
专知会员服务
21+阅读 · 2024年3月8日
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
23+阅读 · 2023年5月10日
【AAAI2023】MHCCL:多变量时间序列的掩蔽层次聚类对比学习
【Tutorial】计算机视觉中的Transformer,98页ppt
专知
21+阅读 · 2021年10月25日
深度学习目标检测模型全面综述:Faster R-CNN、R-FCN和SSD
深度学习世界
10+阅读 · 2017年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员