Causal discovery uncovers complex relationships between variables, enhancing predictions, decision-making, and insights into real-world systems, especially in nonlinear multivariate time series. However, most existing methods primarily focus on pairwise cause-effect relationships, overlooking interactions among groups of variables, i.e., subsystems and their collective causal influence. In this study, we introduce gCDMI, a novel multi-group causal discovery method that leverages group-level interventions on trained deep neural networks and employs model invariance testing to infer causal relationships. Our approach involves three key steps. First, we use deep learning to jointly model the structural relationships among groups of all time series. Second, we apply group-wise interventions to the trained model. Finally, we conduct model invariance testing to determine the presence of causal links among variable groups. We evaluate our method on simulated datasets, demonstrating its superior performance in identifying group-level causal relationships compared to existing methods. Additionally, we validate our approach on real-world datasets, including brain networks and climate ecosystems. Our results highlight that applying group-level interventions to deep learning models, combined with invariance testing, can effectively reveal complex causal structures, offering valuable insights for domains such as neuroscience and climate science.


翻译:因果发现揭示了变量间的复杂关系,可提升对现实世界系统的预测能力、决策水平及机制理解,尤其在非线性多元时间序列分析中具有重要意义。然而,现有方法大多聚焦于变量间的成对因果关系,忽视了变量组(即子系统)间的交互作用及其集体因果效应。本研究提出一种新颖的多群体因果发现方法gCDMI,该方法通过对训练后的深度神经网络实施群体层面的干预,并利用模型不变性检验来推断因果关系。我们的方法包含三个关键步骤:首先,采用深度学习对全部时间序列的群体结构关系进行联合建模;其次,对训练后的模型实施分组干预;最后,通过模型不变性检验判定变量组间是否存在因果关联。我们在模拟数据集上评估了该方法,结果表明其在识别群体层面因果关系方面优于现有方法。此外,我们在脑网络和气候生态系统等真实数据集上验证了该方法的有效性。研究结果证明,对深度学习模型实施群体干预并结合不变性检验,能够有效揭示复杂的因果结构,为神经科学和气候科学等领域提供重要洞见。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员