We study the parameterized complexity of a generalization of the coordinated motion planning problem on graphs, where the goal is to route a specified subset of a given set of $k$ robots to their destinations with the aim of minimizing the total energy (i.e., the total length traveled). We develop novel techniques to push beyond previously-established results that were restricted to solid grids. We design a fixed-parameter additive approximation algorithm for this problem parameterized by $k$ alone. This result, which is of independent interest, allows us to prove the following two results pertaining to well-studied coordinated motion planning problems: (1) A fixed-parameter algorithm, parameterized by $k$, for routing a single robot to its destination while avoiding the other robots, which is related to the famous Rush-Hour Puzzle; and (2) a fixed-parameter algorithm, parameterized by $k$ plus the treewidth of the input graph, for the standard \textsc{Coordinated Motion Planning} (CMP) problem in which we need to route all the $k$ robots to their destinations. The latter of these results implies, among others, the fixed-parameter tractability of CMP parameterized by $k$ on graphs of bounded outerplanarity, which include bounded-height subgrids. We complement the above results with a lower bound which rules out the fixed-parameter tractability for CMP when parameterized by the total energy. This contrasts the recently-obtained tractability of the problem on solid grids under the same parameterization. As our final result, we strengthen the aforementioned fixed-parameter tractability to hold not only on solid grids but all graphs of bounded local treewidth -- a class including, among others, all graphs of bounded genus.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Instruction Tuning for Large Language Models: A Survey
Arxiv
15+阅读 · 2023年8月21日
Arxiv
10+阅读 · 2022年3月30日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Instruction Tuning for Large Language Models: A Survey
Arxiv
15+阅读 · 2023年8月21日
Arxiv
10+阅读 · 2022年3月30日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员