In the realm of EEG decoding, enhancing the performance of artificial neural networks (ANNs) carries significant potential. This study introduces a novel approach, termed "weight freezing", that is anchored on the principles of ANN regularization and neuroscience prior knowledge. The concept of weight freezing revolves around the idea of reducing certain neurons' influence on the decision-making process for a specific EEG task by freezing specific weights in the fully connected layer during the backpropagation process. This is actualized through the use of a mask matrix and a threshold to determine the proportion of weights to be frozen during backpropagation. Moreover, by setting the masked weights to zero, weight freezing can not only realize sparse connections in networks with a fully connected layer as the classifier but also function as an efficacious regularization method for fully connected layers. Through experiments involving three distinct ANN architectures and three widely recognized EEG datasets, we validate the potency of weight freezing. Our method significantly surpasses previous peak performances in classification accuracy across all examined datasets. Supplementary control experiments offer insights into performance differences pre and post weight freezing implementation and scrutinize the influence of the threshold in the weight freezing process. Our study underscores the superior efficacy of weight freezing compared to traditional fully connected networks for EEG feature classification tasks. With its proven effectiveness, this innovative approach holds substantial promise for contributing to future strides in EEG decoding research.


翻译:暂无翻译

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年7月31日
Arxiv
12+阅读 · 2022年11月21日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员