Milner (1984) defined an operational semantics for regular expressions as finite-state processes. In order to axiomatize bisimilarity of regular expressions under this process semantics, he adapted Salomaa's proof system that is complete for equality of regular expressions under the language semantics. Apart from most equational axioms, Milner's system Mil inherits from Salomaa's system a non-algebraic rule for solving single fixed-point equations. Recognizing distinctive properties of the process semantics that render Salomaa's proof strategy inapplicable, Milner posed completeness of the system Mil as an open question. As a proof-theoretic approach to this problem we characterize the derivational power that the fixed-point rule adds to the purely equational part Mil$^-$ of Mil. We do so by means of a coinductive rule that permits cyclic derivations that consist of a finite process graph with empty steps that satisfies the layered loop existence and elimination property LLEE, and two of its Mil$^{-}$-provable solutions. With this rule as replacement for the fixed-point rule in Mil, we define the coinductive reformulation cMil as an extension of Mil$^{-}$. In order to show that cMil and Mil are theorem equivalent we develop effective proof transformations from Mil to cMil, and vice versa. Since it is located half-way in between bisimulations and proofs in Milner's system Mil, cMil may become a beachhead for a completeness proof of Mil. This article extends our contribution to the CALCO 2022 proceedings. Here we refine the proof transformations by framing them as eliminations of derivable and admissible rules, and we link coinductive proofs to a coalgebraic formulation of solutions of process graphs.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
27+阅读 · 2021年2月17日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员