Multi-agent routing problems have gained significant attention recently due to their wide range of industrial applications, ranging from logistics warehouse automation to indoor service robots. Conventionally, they are modeled as classical planning problems. In this paper, we argue that it can be beneficial to formulate them as universal planning problems, particularly when the agents are autonomous entities and may encounter unforeseen situations. We therefore propose universal plans, also known as policies, as the solution concept, and implement a system based on Answer Set Programming (ASP) to compute them. Given an arbitrary two-dimensional map and a profile of goals for a group of partially observable agents, the system translates the problem configuration into logic programs and finds a feasible universal plan for each agent, mapping its observations to actions while ensuring that there are no collisions with other agents. We use the system to conduct experiments and obtain findings regarding the types of goal profiles and environments that lead to feasible policies, as well as how feasibility may depend on the agents' sensors. We also demonstrate how users can customize action preferences to compute more efficient policies, even (near-)optimal ones. The code is available at https://github.com/Fernadoo/MAPF_ASP.


翻译:多智能体路径规划问题因其在物流仓储自动化、室内服务机器人等工业领域的广泛应用而受到广泛关注。传统上,这类问题被建模为经典规划问题。本文认为,将其表述为通用规划问题可能更具优势,尤其当智能体作为自主实体可能遭遇不可预见情况时。因此,我们提出以通用规划(亦称策略)作为解决方案,并基于回答集编程(ASP)实现了一个计算系统。给定任意二维地图和一组部分可观测智能体的目标配置,系统将问题转化为逻辑程序,并为每个智能体找到可行的通用规划,该规划将其观测映射到动作,同时确保与其他智能体无碰撞。我们通过系统实验获得了关于导致可行策略的目标配置类型与环境特征的结论,以及可行性如何受智能体传感器影响的发现。此外,我们还展示了用户如何通过定制动作偏好来计算更高效(甚至接近最优)的策略。代码发布于 https://github.com/Fernadoo/MAPF_ASP。

0
下载
关闭预览

相关内容

人们为了让计算机解决各种棘手的问题,使用编程语言 编写程序代码并通过计算机运算得到最终结果的过程。
144页ppt《扩散模型》,Google DeepMind Sander Dieleman
专知会员服务
48+阅读 · 2025年11月21日
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
23+阅读 · 2023年5月10日
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
【CPS】社会物理信息系统(CPSS)及其典型应用
产业智能官
16+阅读 · 2018年9月18日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
17+阅读 · 2008年12月31日
VIP会员
相关资讯
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
【CPS】社会物理信息系统(CPSS)及其典型应用
产业智能官
16+阅读 · 2018年9月18日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
17+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员