This paper presents a new complex optimization problem in the field of automatic design of advanced industrial systems and proposes a hybrid optimization approach to solve the problem. The problem is multi-objective as it aims at finding solutions that minimize CO2 emissions, transportation time, and costs. The optimization approach combines an evolutionary algorithm and classical mathematical programming to design resilient and sustainable global manufacturing networks. Further, it makes use of the OWL ontology for data consistency and constraint management. The experimental validation demonstrates the effectiveness of the approach in both single and double sourcing scenarios. The proposed methodology, in general, can be applied to any industry case with complex manufacturing and supply chain challenges.


翻译:本文提出了先进工业系统自动化设计领域中的一个新型复杂优化问题,并提出了一种混合优化方法来解决该问题。该问题属于多目标优化,旨在寻找能够最小化二氧化碳排放、运输时间和成本的解决方案。该优化方法结合了进化算法与经典数学规划,以设计具有弹性且可持续的全球制造网络。此外,该方法利用OWL本体来确保数据一致性和约束管理。实验验证证明了该方法在单一和双重采购场景下的有效性。总体而言,所提出的方法论可应用于任何面临复杂制造与供应链挑战的行业案例。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Instruction Tuning for Large Language Models: A Survey
Arxiv
15+阅读 · 2023年8月21日
Arxiv
18+阅读 · 2019年1月16日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员