Synthetic Aperture Radar (SAR) offers a unique capability for all-weather, space-based maritime activity monitoring by capturing and imaging strong reflections from ships at sea. A well-defined challenge in this domain is ship type classification. Due to the high diversity and complexity of ship types, accurate recognition is difficult and typically requires specialized deep learning models. These models, however, depend on large, high-quality ground-truth datasets to achieve robust performance and generalization. Furthermore, the growing variety of SAR satellites operating at different frequencies and spatial resolutions has amplified the need for more annotated datasets to enhance model accuracy. To address this, we present the NovaSAR Automated Ship Target Recognition (NASTaR) dataset. This dataset comprises of 3415 ship patches extracted from NovaSAR S-band imagery, with labels matched to AIS data. It includes distinctive features such as 23 unique classes, inshore/offshore separation, and an auxiliary wake dataset for patches where ship wakes are visible. We validated the dataset applicability across prominent ship-type classification scenarios using benchmark deep learning models. Results demonstrate over 60% accuracy for classifying four major ship types, over 70% for a three-class scenario, more than 75% for distinguishing cargo from tanker ships, and over 87% for identifying fishing vessels. The NASTaR dataset is available at https://10.5523/bris, while relevant codes for benchmarking and analysis are available at https://github.com/benyaminhosseiny/nastar.


翻译:合成孔径雷达(SAR)通过捕获和成像海上船只的强反射信号,为全天候、天基海上活动监测提供了独特能力。该领域一个明确存在的挑战是舰船类型分类。由于舰船类型的高度多样性和复杂性,精确识别较为困难,通常需要专门的深度学习模型。然而,这些模型依赖于大规模、高质量的真实标注数据集才能实现稳健的性能和泛化能力。此外,在不同频率和空间分辨率下运行的SAR卫星种类日益增多,进一步加大了对更多标注数据集的需求,以提升模型的准确性。为此,我们提出了NovaSAR自动舰船目标识别(NASTaR)数据集。该数据集包含从NovaSAR S波段影像中提取的3415个舰船图像块,其标签与AIS数据进行了匹配。它具有鲜明的特征,包括23个独特的类别、近岸/离岸分离,以及一个针对可见舰船尾迹图像块的辅助尾迹数据集。我们使用基准深度学习模型验证了该数据集在多个重要舰船类型分类场景中的适用性。结果表明,在四类主要舰船类型分类中准确率超过60%,在三分类场景中超过70%,在区分货船与油轮时超过75%,在识别渔船时超过87%。NASTaR数据集可通过 https://10.5523/bris 获取,而用于基准测试和分析的相关代码可在 https://github.com/benyaminhosseiny/nastar 获取。

0
下载
关闭预览

相关内容

数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。
Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。
海军5G技术用例
专知会员服务
69+阅读 · 2023年12月1日
【CVPR2023】DynamicDet:目标检测的统一动态架构
专知会员服务
26+阅读 · 2023年4月15日
【CVPR2023】NS3D:3D对象和关系的神经符号Grounding
专知会员服务
22+阅读 · 2023年3月26日
时空数据挖掘:综述
专知
35+阅读 · 2022年6月30日
DeepMind:用PopArt进行多任务深度强化学习
论智
29+阅读 · 2018年9月14日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
7+阅读 · 2015年12月31日
国家自然科学基金
51+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
7+阅读 · 2015年12月31日
国家自然科学基金
51+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员