We study monitorable sets from a topological standpoint. In particular, we use descriptive set theory to describe the complexity of the family of monitorable sets in a countable space $X$. When $X$ is second countable, we observe that the family of monitorable sets is $Π^0_3$ and determine the exact complexities it can have. In contrast, we show that if $X$ is not second countable then the family of monitorable sets can be much more complex, giving an example where it is $ Π^1_1$-complete.


翻译:我们从拓扑学角度研究可监测集。特别地,我们运用描述集合论来描述可数空间$X$中可监测集族的复杂性。当$X$是第二可数空间时,我们观察到可监测集族属于$Π^0_3$类,并确定了其可能具有的确切复杂度。相反地,我们证明若$X$非第二可数,则可监测集族可能复杂得多,并通过实例说明其可达$Π^1_1$-完备的程度。

0
下载
关闭预览

相关内容

UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
【NeurIPS2022】黎曼扩散模型
专知会员服务
43+阅读 · 2022年9月15日
【NeurIPS 2021】学会学习图拓扑
专知会员服务
25+阅读 · 2021年10月22日
专知会员服务
38+阅读 · 2021年6月3日
专知会员服务
50+阅读 · 2021年6月2日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Dichotomy for orderings?
Arxiv
0+阅读 · 1月8日
Arxiv
0+阅读 · 1月2日
VIP会员
相关主题
相关VIP内容
UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
【NeurIPS2022】黎曼扩散模型
专知会员服务
43+阅读 · 2022年9月15日
【NeurIPS 2021】学会学习图拓扑
专知会员服务
25+阅读 · 2021年10月22日
专知会员服务
38+阅读 · 2021年6月3日
专知会员服务
50+阅读 · 2021年6月2日
相关资讯
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员