Assessments of algorithmic bias in large language models (LLMs) are generally catered to uncovering systemic discrimination based on protected characteristics such as sex and ethnicity. However, there are over 180 documented cognitive biases that pervade human reasoning and decision making that are routinely ignored when discussing the ethical complexities of AI. We demonstrate the presence of these cognitive biases in LLMs and discuss the implications of using biased reasoning under the guise of expertise. Rapid adoption of LLMs has brought about a technological shift in which these biased outputs are pervading more sectors than ever before. We call for stronger education, risk management, and continued research as widespread adoption of this technology increases.


翻译:对大型语言模型(LLMs)的算法偏见评估通常旨在揭示基于受保护特征(如性别和种族)的系统性歧视。然而,有超过180个记录在案的认知偏见贯穿于人类推理和决策之中,在讨论AI的伦理复杂性时常常被忽略。我们展示了LLMs中存在这些认知偏见并讨论了在专业知识的幌子下使用有偏见的推理的影响。LLMs的快速采用带来了技术转变,其中有偏见的输出正在渗透更多的部门。我们呼吁进行更强的教育、风险管理和持续的研究,随着这项技术的广泛采用增加。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员