The Gromov-Wasserstein (GW) distance, rooted in optimal transport (OT) theory, quantifies dissimilarity between metric measure spaces and provides a framework for aligning heterogeneous datasets. While computational aspects of the GW problem have been widely studied, a duality theory and fundamental statistical questions concerning empirical convergence rates remained obscure. This work closes these gaps for the quadratic GW distance over Euclidean spaces of different dimensions $d_x$ and $d_y$. We treat both the standard and the entropically regularized GW distance, and derive dual forms that represent them in terms of the well-understood OT and entropic OT (EOT) problems, respectively. This enables employing proof techniques from statistical OT based on regularity analysis of dual potentials and empirical process theory, using which we establish the first GW empirical convergence rates. The derived two-sample rates are $n^{-2/\max\{\min\{d_x,d_y\},4\}}$ (up to a log factor when $\min\{d_x,d_y\}=4$) for standard GW and $n^{-1/2}$ for EGW, which matches the corresponding rates for standard and entropic OT. The parametric rate for EGW is evidently optimal, while for standard GW we provide matching lower bounds, which establish sharpness of the derived rates. We also study stability of EGW in the entropic regularization parameter and prove approximation and continuity results for the cost and optimal couplings. Lastly, the duality is leveraged to shed new light on the open problem of the one-dimensional GW distance between uniform distributions on $n$ points, illuminating why the identity and anti-identity permutations may not be optimal. Our results serve as a first step towards a comprehensive statistical theory as well as computational advancements for GW distances, based on the discovered dual formulations.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
95+阅读 · 2022年8月2日
Arxiv
70+阅读 · 2022年6月30日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员