In probabilistic program analysis, quantitative analysis aims at deriving tight numerical bounds for probabilistic properties such as expectation and assertion probability. Most previous works consider numerical bounds over the whole program state space monolithically and do not consider piecewise bounds. Not surprisingly, monolithic bounds are either conservative, or not expressive and succinct enough in general. To derive better bounds, we propose a novel approach for synthesizing piecewise bounds over probabilistic programs. First, we show how to extract useful piecewise information from latticed $k$-induction operators, and combine the piecewise information with Optional Stopping Theorem to obtain a general approach to derive piecewise bounds over probabilistic programs. Second, we develop algorithms to synthesize piecewise polynomial bounds, and show that the synthesis can be reduced to bilinear programming in the linear case, and soundly relaxed to semidefinite programming in the polynomial case. Experimental results show that our approach generates tight piecewise bounds for a wide range of benchmarks when compared with the state of the art.


翻译:在概率程序分析中,定量分析旨在为期望值和断言概率等概率性质推导严格的数值边界。先前工作大多将整个程序状态空间视为整体来考虑数值边界,而未考虑分段边界。整体边界通常要么过于保守,要么在表达性和简洁性上有所不足。为获得更优边界,我们提出一种合成概率程序分段边界的新方法。首先,我们展示如何从格化$k$归纳算子中提取有效的分段信息,并将该信息与可选停止定理结合,形成推导概率程序分段边界的通用方法。其次,我们开发了分段多项式边界的合成算法,证明在线性情形下该合成可简化为双线性规划问题,在多项式情形下可稳健松弛为半定规划问题。实验结果表明,与现有技术相比,本方法能为广泛基准程序生成严格的分段边界。

0
下载
关闭预览

相关内容

UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
【NeurIPS 2021】学会学习图拓扑
专知会员服务
25+阅读 · 2021年10月22日
专知会员服务
15+阅读 · 2021年8月29日
专知会员服务
25+阅读 · 2021年7月31日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
【NeurIPS2019】图变换网络:Graph Transformer Network
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
VIP会员
相关VIP内容
UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
【NeurIPS 2021】学会学习图拓扑
专知会员服务
25+阅读 · 2021年10月22日
专知会员服务
15+阅读 · 2021年8月29日
专知会员服务
25+阅读 · 2021年7月31日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员