We introduce a new notion of sparsification, called \emph{strong sparsification}, in which constraints are not removed but variables can be merged. As our main result, we present a strong sparsification algorithm for 1-in-3-SAT. The correctness of the algorithm relies on establishing a sub-quadratic bound on the size of certain sets of vectors in $\mathbb{F}_2^d$. This result, obtained using the recent \emph{Polynomial Freiman-Ruzsa Theorem} (Gowers, Green, Manners and Tao, Ann. Math. 2025), could be of independent interest. As an application, we improve the state-of-the-art algorithm for approximating linearly-ordered colourings of 3-uniform hypergraphs (Håstad, Martinsson, Nakajima and{Ž}ivn{ý}, APPROX 2024).


翻译:本文引入了一种称为\emph{强稀疏化}的新稀疏化概念,其中约束条件不会被移除,但变量可以被合并。作为主要结果,我们提出了一种针对1-in-3-SAT问题的强稀疏化算法。该算法的正确性依赖于在$\mathbb{F}_2^d$中特定向量集合的大小上建立一个次二次上界。这一结果通过运用近期提出的\emph{多项式Freiman-Ruzsa定理}(Gowers、Green、Manners与Tao,Ann. Math. 2025)获得,可能具有独立的研究价值。作为应用,我们改进了近似3-一致超图线性有序着色问题的最先进算法(Håstad、Martinsson、Nakajima与{Ž}ivn{ý},APPROX 2024)。

0
下载
关闭预览

相关内容

UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
【NeurIPS2022】黎曼扩散模型
专知会员服务
43+阅读 · 2022年9月15日
【ICLR2022】GNN-LM基于全局信息的图神经网络语义理解模型
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
50+阅读 · 2021年6月2日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
【NeurIPS2022】黎曼扩散模型
专知会员服务
43+阅读 · 2022年9月15日
【ICLR2022】GNN-LM基于全局信息的图神经网络语义理解模型
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
50+阅读 · 2021年6月2日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员