A directed acyclic graph $G=(V,E)$ is said to be $(e,d)$-depth robust if for every subset $S \subseteq V$ of $|S| \leq e$ nodes the graph $G-S$ still contains a directed path of length $d$. If the graph is $(e,d)$-depth-robust for any $e,d$ such that $e+d \leq (1-\epsilon)|V|$ then the graph is said to be $\epsilon$-extreme depth-robust. In the field of cryptography, (extremely) depth-robust graphs with low indegree have found numerous applications including the design of side-channel resistant Memory-Hard Functions, Proofs of Space and Replication, and in the design of Computationally Relaxed Locally Correctable Codes. In these applications, it is desirable to ensure the graphs are locally navigable, i.e., there is an efficient algorithm $\mathsf{GetParents}$ running in time $\mathrm{polylog} |V|$ which takes as input a node $v \in V$ and returns the set of $v$'s parents. We give the first explicit construction of locally navigable $\epsilon$-extreme depth-robust graphs with indegree $O(\log |V|)$. Previous constructions of $\epsilon$-extreme depth-robust graphs either had indegree $\tilde{\omega}(\log^2 |V|)$ or were not explicit.


翻译:G=( V, E) 指向的自行车图 $G=( V, E) 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 深度, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 圖表, 设计, 等, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 直, 直, 直, 等, 。

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Inherent Tradeoffs in Learning Fair Representations
Arxiv
0+阅读 · 2021年12月2日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员