Nowadays, most business and social interactions have moved to the internet, highlighting the relevance of creating online trust. One way to obtain a measure of trust is through reputation mechanisms, which record one's past performance and interactions to generate a reputational value. We observe that numerous existing reputation mechanisms share similarities with actual social phenomena; we call such mechanisms 'social reputation mechanisms'. The aim of this paper is to discuss several social phenomena and map these to existing social reputation mechanisms in a variety of scopes. First, we focus on reputation mechanisms in the individual scope, in which everyone is responsible for their own reputation. Subjective reputational values may be communicated to different entities in the form of recommendations. Secondly, we discuss social reputation mechanisms in the acquaintances scope, where one's reputation can be tied to another through vouching or invite-only networks. Finally, we present existing social reputation mechanisms in the neighbourhood scope. In such systems, one's reputation can heavily be affected by the behaviour of others in their neighbourhood or social group.


翻译:目前,大多数商业和社会互动已经转向互联网,突出了建立在线信任的相关性。获得某种程度信任的途径之一是名声机制,记录个人过去的业绩和互动,以产生声望价值。我们看到,许多现有的名声机制与实际社会现象有相似之处;我们称这种机制为“社会声望机制 ” 。本文的目的是讨论一些社会现象,并将这些现象与现有的社会声望机制在各种不同范围内进行测绘。首先,我们侧重于个人名声机制,其中每个人都对自己的名声负责。主观的名声价值观可以建议的形式传达给不同的实体。第二,我们讨论熟人范围的社会名声机制,其中一个人的名声可以通过旁听或只受邀请的网络与他人相连接。最后,我们介绍邻里或社会群体中现有的社会名声机制。在这种系统中,一个人的名声可能受到其他人的行为的严重影响。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月14日
Arxiv
0+阅读 · 2023年2月11日
Arxiv
13+阅读 · 2022年8月16日
VIP会员
相关VIP内容
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关论文
Arxiv
0+阅读 · 2023年2月14日
Arxiv
0+阅读 · 2023年2月11日
Arxiv
13+阅读 · 2022年8月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员