Recent advances in data-driven evolutionary algorithms (EAs) have demonstrated the potential of leveraging historical data to improve optimization accuracy and adaptability. Despite these advancements, existing methods remain reliant on handcrafted process-level operators. In contrast, Evolutionary Generative Optimization (EvoGO) is a fully data-driven framework designed from the objective level, enabling autonomous learning of the entire search process. EvoGO streamlines the evolutionary optimization process into three stages: data preparation, model training, and population generation. The data preparation stage constructs a pairwise dataset to enrich training diversity without incurring additional evaluation costs. During model training, a tailored generative model learns to transform inferior solutions into superior ones. In the population generation stage, EvoGO replaces traditional reproduction operators with a scalable and parallelizable generative mechanism. Extensive experiments on numerical benchmarks, classical control problems, and high-dimensional robotic tasks demonstrate that EvoGO consistently converges within merely 10 generations and substantially outperforms a wide spectrum of optimization approaches, including traditional EAs, Bayesian optimization, and reinforcement learning based methods. Code is available at: https://github.com/EMI-Group/evogo


翻译:近年来,数据驱动进化算法(EAs)的研究进展表明,利用历史数据能够提升优化精度与适应性。尽管已有方法取得进步,它们仍依赖于人工设计的过程级算子。与之相对,进化生成优化(EvoGO)是一个从目标层面设计的完全数据驱动框架,能够自主学习整个搜索过程。EvoGO将进化优化流程简化为三个阶段:数据准备、模型训练与种群生成。数据准备阶段构建配对数据集以增强训练多样性,同时避免引入额外的评估开销。在模型训练阶段,一个定制的生成模型学习如何将劣质解转化为优质解。在种群生成阶段,EvoGO以可扩展且可并行的生成机制取代了传统的繁殖算子。在数值基准测试、经典控制问题以及高维机器人任务上进行的大量实验表明,EvoGO仅需约10代即可稳定收敛,并在性能上显著超越包括传统进化算法、贝叶斯优化以及基于强化学习的方法在内的多种优化方法。代码发布于:https://github.com/EMI-Group/evogo

0
下载
关闭预览

相关内容

通过采集数据(这里的数据必须满足大、全、细、时),将数据进行组织形成信息流,在做决策或者产品、运营等优化时,根据不同需求对信息流进行提炼总结,从而在数据的支撑下或者指导下进行科学的行动叫做数据驱动。
智能体检索增强生成:关于智能体RAG的综述
专知会员服务
86+阅读 · 2025年1月21日
《用于代码弱点识别的 LLVM 中间表示》CMU
专知会员服务
14+阅读 · 2022年12月12日
论文浅尝 | GEOM-GCN: Geometric Graph Convolutional Networks
开放知识图谱
14+阅读 · 2020年4月8日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
国家自然科学基金
18+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
9+阅读 · 2015年12月31日
国家自然科学基金
31+阅读 · 2015年12月31日
VIP会员
相关基金
国家自然科学基金
18+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
9+阅读 · 2015年12月31日
国家自然科学基金
31+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员