Building on ideas of Gurevich and Shelah for the Gödel Class, we present a new probabilistic proof of the finite model property for the Guarded Fragment of First-Order Logic. Our proof is conceptually simple and yields the optimal doubly-exponential upper bound on the size of minimal models. We precisely analyse the obtained bound, up to constant factors in the exponents, and construct sentences that enforce models of tightly matching size. The probabilistic approach adapts naturally to the Triguarded Fragment, an extension of the Guarded Fragment that also subsumes the Two-Variable Fragment. Finally, we derandomise the probabilistic proof by providing an explicit model construction which replaces randomness with deterministic hash functions.


翻译:基于Gurevich和Shelah针对哥德尔类的研究思想,我们提出了一种新的概率证明方法,用于验证一阶逻辑守卫片段的有穷模型性质。该证明在概念上简洁明了,并能推导出最小模型尺寸的最优双指数上界。我们精确分析了所得界限(直至指数中的常数因子),并构造了能强制生成严格匹配尺寸模型的语句。这种概率方法可自然适配于三守卫片段——该片段不仅是守卫逻辑的扩展,同时也包含双变量片段。最后,我们通过提供显式模型构造实现了证明的去随机化,该构造采用确定性哈希函数替代了随机性过程。

0
下载
关闭预览

相关内容

UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
【ICML2024】基于正则化的持续学习的统计理论
专知会员服务
21+阅读 · 2024年6月11日
【CVPR2024】非自回归序列到序列的视觉-语言模型
专知会员服务
22+阅读 · 2024年3月5日
【NeurIPS2022】黎曼扩散模型
专知会员服务
43+阅读 · 2022年9月15日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【NeurIPS2019】图变换网络:Graph Transformer Network
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
【ICML2024】基于正则化的持续学习的统计理论
专知会员服务
21+阅读 · 2024年6月11日
【CVPR2024】非自回归序列到序列的视觉-语言模型
专知会员服务
22+阅读 · 2024年3月5日
【NeurIPS2022】黎曼扩散模型
专知会员服务
43+阅读 · 2022年9月15日
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【NeurIPS2019】图变换网络:Graph Transformer Network
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员