In this paper, we present a Wachspress-based transfinite formulation on convex polygonal domains for exact enforcement of Dirichlet boundary conditions in physics-informed neural networks. This approach leverages prior advances in geometric design such as blending functions and transfinite interpolation over convex domains. For prescribed Dirichlet boundary function $\mathcal{B}$, the transfinite interpolant of $\mathcal{B}$, $g : \bar P \to C^0(\bar P)$, $\textit{lifts}$ functions from the boundary of a two-dimensional polygonal domain to its interior. The trial function is expressed as the difference between the neural network's output and the extension of its boundary restriction into the interior of the domain, with $g$ added to it. This ensures kinematic admissibility of the trial function in the deep Ritz method. Wachspress coordinates for an $n$-gon are used in the transfinite formula, which generalizes bilinear Coons transfinite interpolation on rectangles to convex polygons. The neural network trial function has a bounded Laplacian, thereby overcoming a limitation in a previous contribution where approximate distance functions were used to exactly enforce Dirichlet boundary conditions. For a point $\boldsymbol{x} \in \bar{P}$, Wachspress coordinates, $\boldsymbolλ : \bar P \to [0,1]^n$, serve as a geometric feature map for the neural network: $\boldsymbolλ$ encodes the boundary edges of the polygonal domain. This offers a framework for solving problems on parametrized convex geometries using neural networks. The accuracy of physics-informed neural networks and deep Ritz is assessed on forward, inverse, and parametrized geometric Poisson boundary-value problems.


翻译:本文提出了一种基于Wachspress坐标的凸多边形区域超越有限公式,用于在物理信息神经网络中精确施加Dirichlet边界条件。该方法借鉴了几何设计领域的先进成果,如凸区域上的混合函数与超越有限插值技术。对于给定的Dirichlet边界函数$\mathcal{B}$,其超越有限插值函数$g : \bar P \to C^0(\bar P)$能够将二维多边形区域边界上的函数$\textit{提升}$至区域内部。试函数被构造为神经网络输出与其边界限制在区域内部延拓值之差,并叠加$g$函数。这保证了试函数在深度Ritz方法中的运动学容许性。超越有限公式采用$n$边形的Wachspress坐标,将矩形上的双线性Coons超越有限插值推广至凸多边形情形。该神经网络试函数具有有界拉普拉斯算子,从而克服了先前采用近似距离函数精确施加Dirichlet边界条件时存在的局限性。对于点$\boldsymbol{x} \in \bar{P}$,Wachspress坐标$\boldsymbolλ : \bar P \to [0,1]^n$可作为神经网络的几何特征映射:$\boldsymbolλ$编码了多边形区域的边界边信息。这为使用神经网络求解参数化凸几何问题提供了理论框架。本文通过正问题、反问题及参数化几何的Poisson边值问题,评估了物理信息神经网络与深度Ritz方法的计算精度。

0
下载
关闭预览

相关内容

人工神经网络(Artificial Neural Network,即ANN ),是20世纪80 年代以来人工智能领域兴起的研究热点。它从信息处理角度对人脑神经元网络进行抽象, 建立某种简单模型,按不同的连接方式组成不同的网络。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。 最近十多年来,人工神经网络的研究工作不断深入,已经取得了很大的进展,其在模式识别、智能机器人、自动控制、预测估计、生物、医学、经济等领域已成功地解决了许多现代计算机难以解决的实际问题,表现出了良好的智能特性。
【ICML2025】生成模型中潜空间的Hessian几何结构
专知会员服务
17+阅读 · 2025年6月15日
【ICLR2022】GNN-LM基于全局信息的图神经网络语义理解模型
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【ICML2025】生成模型中潜空间的Hessian几何结构
专知会员服务
17+阅读 · 2025年6月15日
【ICLR2022】GNN-LM基于全局信息的图神经网络语义理解模型
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
相关资讯
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员