Training of deep reinforcement learning agents is slowed considerably by the presence of input dimensions that do not usefully condition the reward function. Existing modules such as layer normalization can be trained with weight decay to act as a form of selective attention, i.e. an input mask, that shrinks the scale of unnecessary inputs, which in turn accelerates training of the policy. However, we find a surprising result that adding numerous parameters to the computation of the input mask results in much faster training. A simple, high dimensional masking module is compared with layer normalization and a model without any input suppression. The high dimensional mask resulted in a four-fold speedup in training over the null hypothesis and a two-fold speedup in training over the layer normalization method.


翻译:深度强化学习智能体的训练过程会因存在无法有效约束奖励函数的输入维度而显著减慢。现有模块(如层归一化)可通过权重衰减训练实现选择性注意力机制(即输入掩码),从而缩小不必要输入的尺度,进而加速策略训练。然而,我们发现一个令人意外的结果:在输入掩码计算中增加大量参数反而能大幅提升训练速度。本文对比了简单的高维掩码模块、层归一化方法以及无输入抑制的基准模型。实验表明,高维掩码相较于无抑制基准模型实现了四倍训练加速,相较于层归一化方法则达到两倍加速效果。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
18+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
21+阅读 · 2022年12月20日
A Survey on Data Augmentation for Text Classification
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
18+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员