As multimodal AI becomes widely used for credit risk assessment and document review, a domain-specific benchmark is urgently needed that (1) reflects documents and workflows specific to financial credit applications, (2) includes credit-specific understanding and real-world robustness, and (3) preserves privacy compliance without sacrificing practical utility. Here, we introduce FCMBench-V1.0 -- a large-scale financial credit multimodal benchmark for real-world applications, covering 18 core certificate types, with 4,043 privacy-compliant images and 8,446 QA samples. The FCMBench evaluation framework consists of three dimensions: Perception, Reasoning, and Robustness, including 3 foundational perception tasks, 4 credit-specific reasoning tasks that require decision-oriented understanding of visual evidence, and 10 real-world acquisition artifact types for robustness stress testing. To reconcile compliance with realism, we construct all samples via a closed synthesis-capture pipeline: we manually synthesize document templates with virtual content and capture scenario-aware images in-house. This design also mitigates pre-training data leakage by avoiding web-sourced or publicly released images. FCMBench can effectively discriminate performance disparities and robustness across modern vision-language models. Extensive experiments were conducted on 23 state-of-the-art vision-language models (VLMs) from 14 top AI companies and research institutes. Among them, Gemini 3 Pro achieves the best F1(\%) score as a commercial model (64.61), Qwen3-VL-235B achieves the best score as an open-source baseline (57.27), and our financial credit-specific model, Qfin-VL-Instruct, achieves the top overall score (64.92). Robustness evaluations show that even top-performing models suffer noticeable performance drops under acquisition artifacts.


翻译:随着多模态人工智能在信贷风险评估和文档审核中的广泛应用,亟需一个特定领域的基准测试,该基准需满足以下要求:(1) 反映金融信贷应用特有的文档和工作流程,(2) 包含信贷特定理解与现实世界鲁棒性,(3) 在不牺牲实用性的前提下确保隐私合规性。本文推出FCMBench-V1.0——一个面向实际应用的大规模金融信贷多模态基准测试,涵盖18种核心凭证类型,包含4,043张合规图像和8,446个问答样本。FCMBench评估框架包含三个维度:感知、推理与鲁棒性,具体包括3项基础感知任务、4项需要基于视觉证据进行决策导向理解的信贷特定推理任务,以及10种现实世界采集伪影类型用于鲁棒性压力测试。为兼顾合规性与真实性,我们通过封闭的合成-采集流程构建所有样本:手动合成含虚拟内容的文档模板,并在内部采集场景感知图像。该设计通过避免使用网络来源或公开发布的图像,也缓解了预训练数据泄露问题。FCMBench能有效区分现代视觉-语言模型的性能差异与鲁棒性。我们对来自14家顶尖AI公司和研究机构的23个前沿视觉-语言模型进行了广泛实验。其中,Gemini 3 Pro作为商业模型获得最佳F1(%)分数(64.61),Qwen3-VL-235B作为开源基线获得最佳分数(57.27),而我们专为金融信贷设计的模型Qfin-VL-Instruct取得了最高综合分数(64.92)。鲁棒性评估表明,即使在采集伪影影响下表现最佳的模型也会出现明显的性能下降。

0
下载
关闭预览

相关内容

在社会经济生活,银行、证券或保险业者从市场主体募集资金,并投资给其它市场主体的经济活动。
最新开源 RGBD+IMU数据集:FMDataset
计算机视觉life
42+阅读 · 2019年9月21日
AAAI 2018 行为识别论文概览
极市平台
18+阅读 · 2018年3月20日
Seq2seq强化学习实战 (Pytorch, Tensorflow, Theano)
专知
15+阅读 · 2018年1月16日
NLP专题论文解读:从Chatbot、NER到QA系统...
数据派THU
27+阅读 · 2017年11月12日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
最新开源 RGBD+IMU数据集:FMDataset
计算机视觉life
42+阅读 · 2019年9月21日
AAAI 2018 行为识别论文概览
极市平台
18+阅读 · 2018年3月20日
Seq2seq强化学习实战 (Pytorch, Tensorflow, Theano)
专知
15+阅读 · 2018年1月16日
NLP专题论文解读:从Chatbot、NER到QA系统...
数据派THU
27+阅读 · 2017年11月12日
相关基金
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员