Classical-quantum hybrid algorithms have recently garnered significant attention, which are characterized by combining quantum and classical computing protocols to obtain readout from quantum circuits of interest. Recent progress due to Lubasch et al in a 2019 paper provides readout for solutions to the Schrodinger and Inviscid Burgers equations, by making use of a new variational quantum algorithm (VQA) which determines the ground state of a cost function expressed with a superposition of expectation values and variational parameters. In the following, we analyze additional computational prospects in which the VQA can reliably produce solutions to other PDEs that are comparable to solutions that have been previously realized classically, which are characterized with noiseless quantum simulations. To determine the range of nonlinearities that the algorithm can process for other IVPs, we study several PDEs, first beginning with the Navier-Stokes equations and progressing to other equations underlying physical phenomena ranging from electromagnetism, gravitation, and wave propagation, from simulations of the Einstein, Boussniesq-type, Lin-Tsien, Camassa-Holm, Drinfeld-Sokolov-Wilson (DSW), and Hunter-Saxton equations. To formulate optimization routines that the VQA undergoes for numerical approximations of solutions that are obtained as readout from quantum circuits, cost functions corresponding to each PDE are provided in the supplementary section after which simulations results from hundreds of ZGR-QFT ansatzae are generated.


翻译:近年来,经典-量子混合算法受到广泛关注,其特点是通过结合量子与经典计算协议,从感兴趣的量子电路中获取读出结果。Lubasch等人于2019年论文中的最新进展,利用一种新型变分量子算法(VQA)——该算法通过由期望值和变分参数叠加表示的成本函数确定其基态——为薛定谔方程和无粘性Burgers方程的解提供了读出方法。本文进一步分析了该VQA能够可靠求解其他偏微分方程的计算前景,所得解与先前经典方法实现的解具有可比性,且所有计算均基于无噪声量子模拟。为确定该算法处理其他初值问题中非线性项的能力范围,我们研究了多个偏微分方程:首先从Navier-Stokes方程出发,逐步扩展到描述电磁学、引力理论和波传播等现象的方程,包括对Einstein、Boussinesq型、Lin-Tsien、Camassa-Holm、Drinfeld-Sokolov-Wilson(DSW)和Hunter-Saxton方程的模拟。为构建VQA在数值近似解优化过程中所需的计算流程(这些解作为量子电路的读出结果获得),我们在补充材料中给出了各偏微分方程对应的成本函数,并基于数百个ZGR-QFT拟设生成了模拟结果。

0
下载
关闭预览

相关内容

在数学和计算机科学之中,算法(Algorithm)为一个计算的具体步骤,常用于计算、数据处理和自动推理。精确而言,算法是一个表示为有限长列表的有效方法。算法应包含清晰定义的指令用于计算函数。 来自维基百科: 算法
UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
【ICML2023】几何潜在扩散模型的三维分子生成
专知会员服务
26+阅读 · 2023年5月5日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
23+阅读 · 2021年6月22日
【WWW2021】知识图谱逻辑查询的自监督双曲面表示
专知会员服务
30+阅读 · 2021年4月9日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
傅里叶变换和拉普拉斯变换的物理解释及区别
算法与数学之美
11+阅读 · 2018年2月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
EKF常用于目标跟踪系统的扩展卡尔曼滤波器
无人机
10+阅读 · 2017年7月25日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Arxiv
0+阅读 · 1月5日
Arxiv
0+阅读 · 2025年12月31日
VIP会员
相关VIP内容
UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
【ICML2023】几何潜在扩散模型的三维分子生成
专知会员服务
26+阅读 · 2023年5月5日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
23+阅读 · 2021年6月22日
【WWW2021】知识图谱逻辑查询的自监督双曲面表示
专知会员服务
30+阅读 · 2021年4月9日
相关资讯
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
傅里叶变换和拉普拉斯变换的物理解释及区别
算法与数学之美
11+阅读 · 2018年2月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
EKF常用于目标跟踪系统的扩展卡尔曼滤波器
无人机
10+阅读 · 2017年7月25日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员