While state-of-the-art facial expression recognition (FER) classifiers achieve a high level of accuracy, they lack interpretability, an important aspect for end-users. To recognize basic facial expressions, experts resort to a codebook associating a set of spatial action units to a facial expression. In this paper, we follow the same expert footsteps, and propose a learning strategy that allows us to explicitly incorporate spatial action units (aus) cues into the classifier's training to build a deep interpretable model. In particular, using this aus codebook, input image expression label, and facial landmarks, a single action units heatmap is built to indicate the most discriminative regions of interest in the image w.r.t the facial expression. We leverage this valuable spatial cue to train a deep interpretable classifier for FER. This is achieved by constraining the spatial layer features of a classifier to be correlated with \aus map. Using a composite loss, the classifier is trained to correctly classify an image while yielding interpretable visual layer-wise attention correlated with aus maps, simulating the experts' decision process. This is achieved using only the image class expression as supervision and without any extra manual annotations. Moreover, our method is generic. It can be applied to any CNN- or transformer-based deep classifier without the need for architectural change or adding significant training time. Our extensive evaluation on two public benchmarks RAFDB, and AFFECTNET datasets shows that our proposed strategy can improve layer-wise interpretability without degrading classification performance. In addition, we explore a common type of interpretable classifiers that rely on Class-Activation Mapping methods (CAMs), and we show that our training technique improves the CAM interpretability.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年3月13日
Arxiv
21+阅读 · 2021年2月13日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员