We introduce local conditional hypotheses that express how the relation between explanatory variables and outcomes changes across different contexts, described by covariates. By expanding upon the model-X knockoff filter, we show how to adaptively discover these local associations, all while controlling the false discovery rate. Our enhanced inferences can help explain sample heterogeneity and uncover interactions, making better use of the capabilities offered by modern machine learning models. Specifically, our method is able to leverage any model for the identification of data-driven hypotheses pertaining to different contexts. Then, it rigorously test these hypotheses without succumbing to selection bias. Importantly, our approach is efficient and does not require sample splitting. We demonstrate the effectiveness of our method through numerical experiments and by studying the genetic architecture of Waist-Hip-Ratio across different sexes in the UKBiobank.


翻译:本文提出了局部条件假设,用以描述解释变量与结果之间的关系如何随协变量所定义的不同情境而变化。通过扩展模型-X knockoff滤波器,我们展示了如何在控制错误发现率的前提下自适应地发现这些局部关联。我们增强的推断能力有助于解释样本异质性并揭示交互作用,从而更好地利用现代机器学习模型所提供的功能。具体而言,我们的方法能够利用任何模型来识别与不同情境相关的数据驱动假设,随后严格检验这些假设而不会陷入选择偏差。重要的是,本方法高效且无需样本分割。我们通过数值实验以及研究UKBiobank中不同性别下腰臀比的遗传结构,验证了该方法的有效性。

0
下载
关闭预览

相关内容

[ICML2024]消除偏差:微调基础模型以进行半监督学习
专知会员服务
18+阅读 · 2024年5月23日
【NeurIPS2022】分布式自适应元强化学习
专知会员服务
24+阅读 · 2022年10月8日
专知会员服务
33+阅读 · 2021年7月27日
专知会员服务
12+阅读 · 2021年6月20日
专知会员服务
38+阅读 · 2021年3月29日
【AAAI2021】自监督对应学习的对比转换
专知
12+阅读 · 2020年12月11日
使用CNN生成图像先验实现场景的盲图像去模糊
统计学习与视觉计算组
10+阅读 · 2018年6月14日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
12+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
[ICML2024]消除偏差:微调基础模型以进行半监督学习
专知会员服务
18+阅读 · 2024年5月23日
【NeurIPS2022】分布式自适应元强化学习
专知会员服务
24+阅读 · 2022年10月8日
专知会员服务
33+阅读 · 2021年7月27日
专知会员服务
12+阅读 · 2021年6月20日
专知会员服务
38+阅读 · 2021年3月29日
相关资讯
【AAAI2021】自监督对应学习的对比转换
专知
12+阅读 · 2020年12月11日
使用CNN生成图像先验实现场景的盲图像去模糊
统计学习与视觉计算组
10+阅读 · 2018年6月14日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
12+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员