In this study, we systematically elucidate the background and functionality of the Scilit database and evaluate the feasibility and advantages of the comprehensive impact metrics I3 and I3/N, introduced within the Scilit framework. Using a matched dataset of 17,816 journals, we conduct a comparative analysis of Scilit I3/N, Journal Impact Factor, and CiteScore for 2023 and 2024, covering descriptive statistics and distributional characteristics from both disciplinary and publisher perspectives. The comparison reveals that the Scilit I3 and I3/N framework significantly outperforms traditional mean-based metrics in terms of coverage, methodological robustness, and disciplinary fairness. It provides a more accurate, diagnosable, and responsible solution for interdisciplinary journal impact assessment. Our research serves as a "getting started guide" for Scilit, offering scholars, librarians, and academic publishers in the fields of bibliometrics or scientometrics a valuable perspective for exploring I3 and I3/N within an inclusive database. This enables a more accurate and comprehensive understanding of disciplinary development and scientific progress. We advocate for piloting and validating this method in broader evaluation contexts to foster a more precise and diverse representation of scientific progress.


翻译:本研究系统阐述了Scilit数据库的背景与功能,评估了在Scilit框架下引入的综合影响力指标I3及I3/N的可行性与优势。通过17,816种期刊的匹配数据集,我们对2023年与2024年的Scilit I3/N、期刊影响因子及CiteScore进行了比较分析,涵盖描述性统计与分布特征,并从学科和出版商视角展开探讨。比较结果表明,Scilit I3及I3/N框架在覆盖范围、方法稳健性和学科公平性方面显著优于传统的基于均值的指标,为跨学科期刊影响力评估提供了更精确、可诊断且负责任的解决方案。本研究可作为Scilit的"入门指南",为文献计量学或科学计量学领域的学者、图书馆员及学术出版商提供在包容性数据库中探索I3与I3/N的宝贵视角,从而更准确、全面地理解学科发展与科学进步。我们建议在更广泛的评估场景中试点并验证该方法,以促进对科学进展更精确和多元化的呈现。

0
下载
关闭预览

相关内容

数据库( Database )或数据库管理系统( Database management systems )是按照数据结构来组织、存储和管理数据的仓库。目前数据管理不再仅仅是存储和管理数据,而转变成用户所需要的各种数据管理的方式。
144页ppt《扩散模型》,Google DeepMind Sander Dieleman
专知会员服务
48+阅读 · 2025年11月21日
Transformers 出现以来关系抽取任务的系统综述
专知会员服务
25+阅读 · 2025年11月8日
NLG任务评价指标BLEU与ROUGE
AINLP
21+阅读 · 2020年5月25日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
Mask R-CNN 论文笔记
统计学习与视觉计算组
11+阅读 · 2018年3月22日
LibRec 每周算法:DeepFM
LibRec智能推荐
14+阅读 · 2017年11月6日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
NLG任务评价指标BLEU与ROUGE
AINLP
21+阅读 · 2020年5月25日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
Mask R-CNN 论文笔记
统计学习与视觉计算组
11+阅读 · 2018年3月22日
LibRec 每周算法:DeepFM
LibRec智能推荐
14+阅读 · 2017年11月6日
相关基金
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员