Large Reasoning Models (LRMs) have demonstrated promising performance in complex tasks. However, the resource-consuming reasoning processes may be exploited by attackers to maliciously occupy the resources of the servers, leading to a crash, like the DDoS attack in cyber. To this end, we propose a novel attack method on LRMs termed ExtendAttack to maliciously occupy the resources of servers by stealthily extending the reasoning processes of LRMs. Concretely, we systematically obfuscate characters within a benign prompt, transforming them into a complex, poly-base ASCII representation. This compels the model to perform a series of computationally intensive decoding sub-tasks that are deeply embedded within the semantic structure of the query itself. Extensive experiments demonstrate the effectiveness of our proposed ExtendAttack. Remarkably, it increases the length of the model's response by over 2.5 times for the o3 model on the HumanEval benchmark. Besides, it preserves the original meaning of the query and achieves comparable answer accuracy, showing the stealthiness.


翻译:大型推理模型(LRMs)在复杂任务中展现出优异性能。然而,其资源密集型的推理过程可能被攻击者利用以恶意占用服务器资源,导致系统崩溃,类似于网络中的DDoS攻击。为此,我们提出一种针对LRMs的新型攻击方法ExtendAttack,通过隐蔽地扩展模型推理过程来恶意占用服务器资源。具体而言,我们系统性地混淆良性提示中的字符,将其转换为复杂的多进制ASCII表示,迫使模型执行一系列深度嵌入查询语义结构中的计算密集型解码子任务。大量实验证明了我们提出的ExtendAttack的有效性。值得注意的是,在HumanEval基准测试中,该方法使o3模型的响应长度增加了2.5倍以上。此外,攻击在保持查询原意的同时实现了相当的答案准确率,体现了其隐蔽性。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员