Multivariate Time-Series (MTS) clustering is crucial for signal processing and data analysis. Although deep learning approaches, particularly those leveraging Contrastive Learning (CL), are prominent for MTS representation, existing CL-based models face two key limitations: 1) neglecting clustering information during positive/negative sample pair construction, and 2) introducing unreasonable inductive biases, e.g., destroying time dependence and periodicity through augmentation strategies, compromising representation quality. This paper, therefore, proposes a Temporal-Frequency Enhanced Contrastive (TFEC) learning framework. To preserve temporal structure while generating low-distortion representations, a temporal-frequency Co-EnHancement (CoEH) mechanism is introduced. Accordingly, a synergistic dual-path representation and cluster distribution learning framework is designed to jointly optimize cluster structure and representation fidelity. Experiments on six real-world benchmark datasets demonstrate TFEC's superiority, achieving 4.48% average NMI gains over SOTA methods, with ablation studies validating the design. The code of the paper is available at: https://github.com/yueliangy/TFEC.
翻译:多元时间序列(MTS)聚类在信号处理与数据分析中至关重要。尽管深度学习方法,尤其是利用对比学习(CL)的方法,在MTS表征学习中占据主导地位,但现有的基于CL的模型面临两个关键局限:1)在正/负样本对构建过程中忽略聚类信息;2)引入不合理的归纳偏置,例如通过增强策略破坏时间依赖性与周期性,从而损害表征质量。为此,本文提出一种时频增强对比学习(TFEC)框架。为在生成低失真表征的同时保持时序结构,本文引入了时频协同增强(CoEH)机制。相应地,设计了一种协同的双路径表征与聚类分布学习框架,以联合优化聚类结构与表征保真度。在六个真实世界基准数据集上的实验证明了TFEC的优越性,其平均归一化互信息(NMI)相较于最先进(SOTA)方法提升了4.48%,消融研究验证了设计有效性。本文代码已公开于:https://github.com/yueliangy/TFEC。