Large Language Models (LLMs) are taking many industries by storm. They possess impressive reasoning capabilities and are capable of handling complex problems, as shown by their steadily improving scores on coding and mathematical benchmarks. However, are the models currently available truly capable of addressing real-world challenges, such as those found in the automotive industry? How well can they understand high-level, abstract instructions? Can they translate these instructions directly into functional code, or do they still need help and supervision? In this work, we put one of the current state-of-the-art models to the test. We evaluate its performance in the task of translating abstract requirements, extracted from automotive standards and documents, into configuration code for CARLA simulations.


翻译:大语言模型(LLMs)正在席卷众多行业。如其在编程与数学基准测试中持续提升的分数所示,这些模型展现出卓越的推理能力,能够处理复杂问题。然而,当前可用的模型是否真正具备应对现实挑战(例如汽车行业中的难题)的能力?它们对高层次抽象指令的理解程度如何?能否直接将此类指令转化为可执行代码,抑或仍需辅助与监督?本研究对当前最先进的模型之一进行测试,评估其将汽车标准与文档中提取的抽象需求转化为CARLA仿真配置代码的任务表现。

0
下载
关闭预览

相关内容

代码(Code)是专知网的一个重要知识资料文档板块,旨在整理收录论文源代码、复现代码,经典工程代码等,便于用户查阅下载使用。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
13+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
13+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员