Reward hacking, where a reasoning model exploits loopholes in a reward function to achieve high rewards without solving the intended task, poses a significant threat. This behavior may be explicit, i.e. verbalized in the model's chain-of-thought (CoT), or implicit, where the CoT appears benign thus bypasses CoT monitors. To detect implicit reward hacking, we propose TRACE (Truncated Reasoning AUC Evaluation). Our key observation is that hacking occurs when exploiting the loophole is easier than solving the actual task. This means that the model is using less 'effort' than required to achieve high reward. TRACE quantifies effort by measuring how early a model's reasoning becomes sufficient to obtain the reward. We progressively truncate a model's CoT at various lengths, force the model to answer, and estimate the expected reward at each cutoff. A hacking model, which takes a shortcut, will achieve a high expected reward with only a small fraction of its CoT, yielding a large area under the accuracy-vs-length curve. TRACE achieves over 65% gains over our strongest 72B CoT monitor in math reasoning, and over 30% gains over a 32B monitor in coding. We further show that TRACE can discover unknown loopholes during training. Overall, TRACE offers a scalable unsupervised approach for oversight where current monitoring methods prove ineffective.


翻译:奖励破解是指推理模型利用奖励函数中的漏洞获得高额奖励却未解决预期任务的行为,这构成了重大威胁。该行为可能是显式的,即在模型的思维链中明确表述;也可能是隐式的,此时思维链看似正常从而绕过思维链监控器。为检测隐式奖励破解,我们提出TRACE(截断推理AUC评估)。我们的核心观察是:当利用漏洞比解决实际任务更容易时,破解行为就会发生。这意味着模型为获得高奖励所付出的"努力"低于所需水平。TRACE通过测量模型推理在何时变得足以获得奖励来量化努力程度:我们逐步截断模型思维链至不同长度,强制模型作答,并估算每个截断点处的期望奖励。采用捷径的破解模型仅需少量思维链片段即可获得高期望奖励,从而在准确率-长度曲线下产生较大面积。在数学推理任务中,TRACE相比我们最强的720亿参数思维链监控器提升超过65%;在代码生成任务中,相比320亿参数监控器提升超过30%。我们进一步证明TRACE能在训练过程中发现未知漏洞。总体而言,在当前监控方法失效的监督场景中,TRACE提供了一种可扩展的无监督解决方案。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员