Transformers empirically perform precise probabilistic reasoning in carefully constructed ``Bayesian wind tunnels'' and in large-scale language models, yet the mechanisms by which gradient-based learning creates the required internal geometry remain opaque. We provide a complete first-order analysis of how cross-entropy training reshapes attention scores and value vectors in a transformer attention head. Our core result is an \emph{advantage-based routing law} for attention scores, \[ \frac{\partial L}{\partial s_{ij}} = α_{ij}\bigl(b_{ij}-\mathbb{E}_{α_i}[b]\bigr), \qquad b_{ij} := u_i^\top v_j, \] coupled with a \emph{responsibility-weighted update} for values, \[ Δv_j = -η\sum_i α_{ij} u_i, \] where $u_i$ is the upstream gradient at position $i$ and $α_{ij}$ are attention weights. These equations induce a positive feedback loop in which routing and content specialize together: queries route more strongly to values that are above-average for their error signal, and those values are pulled toward the queries that use them. We show that this coupled specialization behaves like a two-timescale EM procedure: attention weights implement an E-step (soft responsibilities), while values implement an M-step (responsibility-weighted prototype updates), with queries and keys adjusting the hypothesis frame. Through controlled simulations, including a sticky Markov-chain task where we compare a closed-form EM-style update to standard SGD, we demonstrate that the same gradient dynamics that minimize cross-entropy also sculpt the low-dimensional manifolds identified in our companion work as implementing Bayesian inference. This yields a unified picture in which optimization (gradient flow) gives rise to geometry (Bayesian manifolds), which in turn supports function (in-context probabilistic reasoning).


翻译:Transformer 在精心构建的“贝叶斯风洞”以及大规模语言模型中,经验上能够执行精确的概率推理,然而基于梯度的学习如何创建所需的内部几何结构,其机制仍不明确。我们提供了一个关于交叉熵训练如何重塑 Transformer 注意力头中注意力分数与值向量的完整一阶分析。我们的核心结果是注意力分数的**基于优势的路由定律**:\[ \frac{\partial L}{\partial s_{ij}} = α_{ij}\bigl(b_{ij}-\mathbb{E}_{α_i}[b]\bigr), \qquad b_{ij} := u_i^\top v_j, \] 以及值的**责任加权更新**:\[ Δv_j = -η\sum_i α_{ij} u_i, \] 其中 $u_i$ 是位置 $i$ 处的上游梯度,$α_{ij}$ 是注意力权重。这些方程诱导了一个正反馈循环,其中路由与内容共同专业化:查询更强烈地路由至那些对其误差信号具有高于平均水平的值的向量,而这些值向量则被拉向使用它们的查询。我们证明这种耦合的专业化行为类似于一个双时间尺度的 EM 过程:注意力权重实现 E 步(软责任分配),而值向量实现 M 步(责任加权的原型更新),查询和键则调整假设框架。通过受控模拟,包括一个粘性马尔可夫链任务(其中我们将闭式 EM 风格更新与标准 SGD 进行比较),我们证明了最小化交叉熵的相同梯度动力学也塑造了我们在配套工作中识别出的、用于实现贝叶斯推理的低维流形。这形成了一个统一的图景:优化(梯度流)产生了几何结构(贝叶斯流形),而几何结构又支撑了功能(上下文中的概率推理)。

0
下载
关闭预览

相关内容

梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
注意力机制可解释吗?这篇ACL 2019论文说……
机器之心
11+阅读 · 2019年6月16日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员