This paper examines deposits of individuals ("retail") and large companies ("wholesale") in the U.S. banking industry, and how these deposit types are impacted by macroeconomic factors, such as quantitative easing (QE). Actual data for deposits by holder are unavailable. We use a dataset on banks' financial information and probabilistic generative model to predict industry retail-wholesale deposit split from 2000 to 2020. Our model assumes account balances arise from separate retail and wholesale lognormal distributions and fit parameters of distributions by minimizing error between actual bank metrics and simulated metrics using the model's generative process. We use time-series regression to forward predict retail-wholesale deposits as function of loans, retail loans, and reserve balances at Fed banks. We find increase in reserves (representing QE) increases wholesale but not retail deposits, and increase in loans increase both wholesale and retail deposits evenly. The result shows that QE following the 2008 financial crisis benefited large companies more than average individuals, a relevant finding for economic decision making. In addition, this work benefits bank management strategy by providing forecasting capability for retail-wholesale deposits.


翻译:本文审查了美国银行业的个人存款(“零售”)和大公司存款(“批发”)和大公司存款(“批发”),以及这些存款类型如何受到宏观经济因素的影响,如量化宽松(QE)等。没有持有者存款的实际数据。我们使用银行金融信息数据集和概率基因化模型来预测2000年至2020年的零售批发存款。我们的模型假设账户余额来自单独的零售和批发逻辑正常分配以及适当的分配参数,办法是利用模型的基因化过程尽量减少实际银行计量和模拟计量之间的错误。我们利用时间序列回归来预测零售批发存款作为贷款、零售贷款和美联储银行储备余额的功能。我们发现储备的增加(代表QE)增加了批发存款而不是零售存款,贷款的增加平衡地增加了批发存款和零售存款。结果显示,2008年金融危机之后的QE使大公司受益超过普通个人,这是经济决策的相关结果。此外,通过提供零售批发存款的预测能力,使工作银行管理战略受益。

0
下载
关闭预览

相关内容

在机器学习中,生成模型可以用来直接对数据建模(例如根据某个变量的概率密度函数进行数据采样),也可以用来建立变量间的条件概率分布。条件概率分布可以由生成模型根据贝叶斯定理形成。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
208+阅读 · 2019年9月30日
量化金融强化学习论文集合
专知
14+阅读 · 2019年12月18日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Arxiv
0+阅读 · 2021年3月12日
Arxiv
15+阅读 · 2020年12月17日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
208+阅读 · 2019年9月30日
相关资讯
量化金融强化学习论文集合
专知
14+阅读 · 2019年12月18日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Top
微信扫码咨询专知VIP会员