This text contains some notes on the Griesmer bound. In particular, we give a geometric proof of the Griesmer bound for the generalized weights and show that a Solomon--Stiffler type construction attains it if the minimum distance is sufficiently large. We also determine the parameters of optimal binary codes for dimensions at most seven and the optimal ternary codes for dimensions at most five.
翻译:本文包含关于Griesmer界的一些注记。特别地,我们给出了广义权重Griesmer界的几何证明,并证明了当最小距离足够大时,Solomon–Stiffler型构造可以达到该界。我们还确定了维度不超过七的最优二元码参数,以及维度不超过五的最优三元码参数。