Wax is what you put on a surfboard to avoid slipping. It is an essential tool to go surfing... We introduce WAX-ML a research-oriented Python library providing tools to design powerful machine learning algorithms and feedback loops working on streaming data. It strives to complement JAX with tools dedicated to time series. WAX-ML makes JAX-based programs easy to use for end-users working with pandas and xarray for data manipulation. It provides a simple mechanism for implementing feedback loops, allows the implementation of online learning and reinforcement learning algorithms with functions, and makes them easy to integrate by end-users working with the object-oriented reinforcement learning framework from the Gym library. It is released with an Apache open-source license on GitHub at https://github.com/eserie/wax-ml.


翻译:Wax是您在冲浪板上放置的避免滑落的工具。 这是一个进行冲浪的基本工具。 我们引入了WAX-ML 一个面向研究的Python图书馆, 提供设计强大的机器学习算法和流数据反馈循环的工具。 它努力用时间序列专用工具来补充JAX。 WAX-ML 使基于JAX 的程序便于终端用户与pandas和xarray一起操作数据操作。 它为实施反馈回路提供了一个简单的机制, 使在线学习和强化带有功能的学习算法得以实施, 并使终端用户更容易与Gym 库的面向对象的强化学习框架融合。 它在https://github.com/eserie/wax-ml上, 与GitHub的Apache开放源许可证一起发布。

0
下载
关闭预览

相关内容

专知会员服务
119+阅读 · 2019年12月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
40+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
26+阅读 · 2019年11月24日
Arxiv
5+阅读 · 2017年7月25日
VIP会员
相关VIP内容
专知会员服务
119+阅读 · 2019年12月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
40+阅读 · 2019年10月9日
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
Top
微信扫码咨询专知VIP会员