ReLU networks are piecewise-linear (PWL), enabling exact symbolic verification via \SMT(\LRA) or \MILP. However, safety claims in certification pipelines require not only correctness but also \emph{checkable evidence}. We develop a proof-carrying verification core for PWL neural constraints: (i) we formalize ReLU networks as unions of polyhedra indexed by activation patterns; (ii) we present exact \SMT/\MILP encodings and the canonical convex-hull relaxation for each bounded ReLU; and (iii) we introduce a certificate calculus in which bound tightening, stabilization, strengthening, and pruning steps emit explicit algebraic witnesses (LP dual multipliers and Farkas infeasibility certificates). Crucially, these witnesses are \emph{symbolic objects} that admit independent verification in exact arithmetic over $\Q$. We provide a symbolic certificate checker, normalization rules that preserve validity, and a compositional view of region-wise certificates as a global proof artifact for universal safety.


翻译:ReLU网络具有分段线性特性,可通过SMT(LRA)或MILP实现精确符号验证。然而,认证流程中的安全性声明不仅要求正确性,更需要可检验的证据支撑。本文为分段线性神经约束开发了一个证明携带式验证核心:(i) 将ReLU网络形式化为按激活模式索引的多面体并集;(ii) 针对每个有界ReLU提出精确的SMT/MILP编码及标准凸包松弛方法;(iii) 构建证书演算体系,使边界紧缩、稳定性优化、约束强化与剪枝步骤能生成显式代数见证(LP对偶乘子与Farkas不可行性证书)。关键的是,这些见证作为符号对象支持在Q上的精确算术独立验证。我们提供了符号证书检查器、保持有效性的规范化规则,以及将区域化证书组合为全局安全性证明的复合视角。

0
下载
关闭预览

相关内容

【ICLR2022】GNN-LM基于全局信息的图神经网络语义理解模型
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
9+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
9+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员