Artificial Intelligence (AI) has emerged as both a continuation of historical technological revolutions and a potential rupture with them. This paper argues that AI must be viewed simultaneously through three lenses: \textit{risk}, where it resembles nuclear technology in its irreversible and global externalities; \textit{transformation}, where it parallels the Industrial Revolution as a general-purpose technology driving productivity and reorganization of labor; and \textit{continuity}, where it extends the fifty-year arc of computing revolutions from personal computing to the internet to mobile. Drawing on historical analogies, we emphasize that no past transition constituted a strict singularity: disruptive shifts eventually became governable through new norms and institutions. We examine recurring patterns across revolutions -- democratization at the usage layer, concentration at the production layer, falling costs, and deepening personalization -- and show how these dynamics are intensifying in the AI era. Sectoral analysis illustrates how accounting, law, education, translation, advertising, and software engineering are being reshaped as routine cognition is commoditized and human value shifts to judgment, trust, and ethical responsibility. At the frontier, the challenge of designing moral AI agents highlights the need for robust guardrails, mechanisms for moral generalization, and governance of emergent multi-agent dynamics. We conclude that AI is neither a singular break nor merely incremental progress. It is both evolutionary and revolutionary: predictable in its median effects yet carrying singularity-class tail risks. Good outcomes are not automatic; they require coupling pro-innovation strategies with safety governance, ensuring equitable access, and embedding AI within a human order of responsibility.


翻译:人工智能(AI)既表现为历史技术革命的延续,也潜藏着与之断裂的可能性。本文主张必须通过三重透镜同时审视AI:其一为风险视角,其不可逆的全球性外部效应与核技术具有相似性;其二为转型视角,作为通用目的技术,AI在驱动生产力变革与劳动力重组方面可与工业革命类比;其三为延续性视角,它延续了计算革命五十年的发展轨迹——从个人计算到互联网再到移动互联。借助历史类比,我们强调过往技术转型均未构成严格意义上的奇点:颠覆性变革最终皆通过新规范与新制度实现可治理化。通过考察历次革命中的重复模式——应用层的民主化、生产层的集中化、成本下降及个性化深化——我们揭示这些动态在AI时代正加速显现。行业案例分析表明,随着常规认知任务被商品化,会计、法律、教育、翻译、广告及软件工程等领域正在重塑,人类价值逐渐转向判断力、信任与伦理责任。在前沿领域,设计道德AI智能体的挑战凸显了构建稳健防护机制、道德泛化机制以及治理多智能体涌现动态的必要性。我们的结论是:AI既非单一的断裂性突破,亦非纯粹的渐进式进步。它兼具演进性与革命性——其总体效应具有可预测性,却同时承载着奇点级别的尾部风险。良好结果不会自动实现,需要将促进创新战略与安全治理相结合,保障公平获取,并将AI嵌入人类责任秩序的框架之中。

0
下载
关闭预览

相关内容

人工智能杂志AI(Artificial Intelligence)是目前公认的发表该领域最新研究成果的主要国际论坛。该期刊欢迎有关AI广泛方面的论文,这些论文构成了整个领域的进步,也欢迎介绍人工智能应用的论文,但重点应该放在新的和新颖的人工智能方法如何提高应用领域的性能,而不是介绍传统人工智能方法的另一个应用。关于应用的论文应该描述一个原则性的解决方案,强调其新颖性,并对正在开发的人工智能技术进行深入的评估。 官网地址:http://dblp.uni-trier.de/db/journals/ai/
Al Agent:AI时代的软件革命
专知会员服务
43+阅读 · 2025年5月13日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
国家自然科学基金
46+阅读 · 2015年12月31日
Arxiv
0+阅读 · 2025年12月25日
VIP会员
相关资讯
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
Top
微信扫码咨询专知VIP会员