We study the existence of positional strategies for the protagonist in infinite duration games over arbitrary game graphs. We prove that prefix-independent objectives in {\Sigma}_0^2 which are positional and admit a (strongly) neutral letter are exactly those that are recognised by history-deterministic monotone co-B\"uchi automata over countable ordinals. This generalises a criterion proposed by [Kopczy\'nski, ICALP 2006] and gives an alternative proof of closure under union for these objectives, which was known from [Ohlmann, TheoretiCS 2023]. We then give two applications of our result. First, we prove that the mean-payoff objective is positional over arbitrary game graphs. Second, we establish the following completeness result: for any objective W which is prefix-independent, admits a (weakly) neutral letter, and is positional over finite game graphs, there is an objective W' which is equivalent to W over finite game graphs and positional over arbitrary game graphs.


翻译:我们研究了在任意博弈图上无限时长博弈中主角位置策略的存在性。我们证明了,在 Σ_0^2 中具有前缀独立性、可位置化且允许(强)中性字母的目标,恰好是那些可由在可数序数上的历史确定性单调 co-Büchi 自动机识别的目标。这推广了 [Kopczyński, ICALP 2006] 提出的一个判据,并为这些目标在并集下的封闭性提供了一个替代证明(该性质已知于 [Ohlmann, TheoretiCS 2023])。随后,我们给出了我们结果的两个应用。首先,我们证明了平均收益目标在任意博弈图上是可位置化的。其次,我们建立了如下完备性结果:对于任意具有前缀独立性、允许(弱)中性字母且在有限博弈图上可位置化的目标 W,存在一个目标 W',它在有限博弈图上与 W 等价,并且在任意博弈图上是可位置化的。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
32+阅读 · 2019年10月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2025年10月15日
VIP会员
相关VIP内容
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
32+阅读 · 2019年10月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员